AF Advanced

EMBEDDED POWER

AC-DC AND DC-DC POWER CONVERSION SOLUTIONS

Table of Contents

AC-DC Power Supplies

Low Power Up to 650 W

10 Open frame/enclosed 1 to 4 outputs
30 External power adapters
Fanless/Conduction Cooled Up to 1000 W
18 LCC250 Series
20 LCC600 Series
22 LCC1200 Series
24 CoolX 600 Series
26 CoolX 1000 Series
28 CS1000 Series
Healthcare Power Up to 24000 W
311 to 24 outputs
Modular Up to 24000 W
36 UltiMod Series
38 Intelligent Medium Power (iMP)
42 Micro Medium Power (μ MP)
44 CoolX®1800
46 CoolX®3000
48 Intelligent Medium-High Power (iVS)
52 Precision High Power System (iHP)
56 Intelligent Transfer Switch (iTS)
Bulk Power Up to 12000 W
58 LCM Series
70 Xsolo Series
72 Distributed power bulk front end
Bench Programmable
76 iLS600 Series
78 iLS1500 Series
Distributed and CRPS Power Up to 3000 W
80 DS Series
86 CSU Series
Racks
8850 V, 18 kW, 10 U Open Rack Power Shelf
8950 V, 3 kW, Open Rack Rectifier
9048 V, 30 kW, 2U EIA Power Shelf
9148 V, 3 kW, EIA Rectifier with ATS
DIN Rail (ADN) Up to 960 W
92 Single \& 3-phase

DC-DC Converters

Industry Standard Isolated

96 Quarter-Brick
97 Eighth-Brick
99 Sixteenth-Brick
101 Radio Frequency Power Modules
102 Wide Input Voltage
102 Direct Conversion - PSA Series
Industry Standard Non-isolated
103 C-Class
105 POLA Products
107 Digital DC-DC Converters
High Power 300 V Input
108 On-board AC-DC Distributed Architecture
109 Power Factor Correction (PFC)
Low Power Isolated
110 Low Power Isolated DC-DC
117 DC-DC Converter for Railway Application
119 DC-DC Converter for Medical Application

High Voltage DC-DC Modules
121 Mission-Critical High Voltage Solutions

Advanced Energy shapes and transforms how power is used, delivered, and managed.

Advanced Energy has devoted more than four decades to perfecting power for its global customers. We design and manufacture highly engineered, precision power conversion, measurement, and control solutions for mission-critical applications and processes.

Advanced Energy offers a broad portfolio of AC-DC and DC-DC power supplies from its Artesyn, Excelsys, and UltraVolt product lines which enables customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep application know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

Local Support

Our regional sales offices are ready to provide expert local applications and sales support. In addition, an extensive network of manufacturers' representatives and distributors bring our products to you. Please call for sales office locations near you or visit our website at advancedenergy.com.

Contact Us

Americas (USA)
Telephone: +1 8884127832

Technical Support
Americas (USA)
+1 8884127832 (North America)

Europe (UK)
Telephone: +44 (0) 1384842211

Europe, Middle East \& Africa (EMEA) Asia 08000321546 (UK) +400 8899130 (China) +44800 0321546 (outside UK) +86 2988741895 (outside China)

Asia (HK)
Telephone: +852 21763333

Embedded Power Selector Guide

FANLESS/ CONDUCTION COOLED

CoolX600
600 W

CoolX1000
1000 W

LOW VOLTAGE

Telecom DC-DC

1/16th brick 35 to 120 W; ALD/AVD 1/8th brick 50 to 300 W; AVO/ADO $1 / 4$ brick 50 to 800 W; AVQ/ADQ $1 / 2$ brick 300 to 700 W; AVE/ADH Full brick 500 to 800 W; AGF

HIGH VOLTAGE

High Power C
Output voltage 125 V to 60 kV
Output power
60,125 , or 250 W

A
Output voltage
62 V to 40 kV
Output power
$4,15,20$, and 30 W

LE

Output voltage 1 to 30 kV
Output power 4,20 , and 30 W

AA

Output voltage 62 V to 6 kV
Output power 4,20 , and 30 W

HVA

Output voltage 1 to 20 kV
Max output power

US
Output voltage 200 to 500 V Max output power 0.1 W

A History of Innovation

At Advanced Energy, our engineers have been designing and developing power supply products for more than 40 years. Our products have helped pave the way for advancements in numerous applications in the communications, industrial, computing, data storage, and healthcare markets.

When developing products, time is money. Every step in the process that you can eliminate, speed up, or make more effective accelerates your time-to-market and lowers your R\&D costs.

Major advantages of partnering with us include:

- Broad portfolio of power supplies
- Highly versatile power supplies
- Modified standards and value-add services
- Low energy consumption
- Energy-efficient products
- Space-efficient power
- Reliability and quality
- Worldwide distributor network

■ Vast knowledge, experience, and expertise

Advanced Energy utilizes the following design methodologies and techniques to ensure that our power supplies meet the rigorous quality and reliability requirements of the communications, industrial, computing, data storage, and healthcare markets.

Power for the Next Generation

Many of our products incorporate powerful programming, monitoring, and self-testing software providing system engineers with critical data to manage power consumption. High efficiency, green design and manufacturing technologies, and innovative supply and demand systems collectively deliver key business efficiencies and new design capabilities.

Advanced Energy can help take your new product design or redevelopment efforts to the next level with a shorter time-to-market, higher reliability, and greater scalability.

- Shorter Time-to-Market - our latest programmable power solutions and our modular, medium/high power $\mu \mathrm{MP}$ and iMP series provide you with shorter time-to-market and offer faster test and qualification than traditional analog power solutions. Our modified standards and value-add services also provide turn-key solutions for the best application match to help accelerate time-to-market without compromising quality.
- Higher Reliability - moving from inflexible fixedoutput analog power supplies to programmable power solutions enables our engineers to more extensively test and document our products to ensure they meet or exceed your reliability requirements. We also provide a wide range of environmental, EMC compliance, and safety certifications to help speed your product design process.
- Greater Scalability - many of our latest power solutions are scalable, programmable, and plugcompatible with our earlier-generation products, enabling you to quickly address changes or enhancements to your systems. You can now satisfy most changes in power requirements by reprogramming the power supply and, if you needs change radically, you can easily swap to a more capable solution. This inherent scalability eliminates redesign costs, reduces testing time, and provides you with greater design flexibility.

Power Supply Design Controls

Reliability Models and Predictions

- A prediction of design reliability in terms of Mean Time Between Failures (MTBF) using Telecordia, Bellcore, or MIL-HDBK-217F
- Not intended as a measure of expected field performance, but for design trade-off analysis and review of part stress derating performance

Failure Modes and Effect Analysis

- An analytical technique to identify and review failure modes, their causes, mechanisms, and effects
- Provides a formal risk assessment to reduce field failures at the customer site

Component Selection

- Database warehouse of all component information
- Design engineers can only select components rigorously approved from suppliers that have undergone strict qualification and auditing process

Derating Analysis

- Intended to reduce the failure rate of components

Design for Manufacturability

- Design rules regarding manufacturability

Simulation Analysis - Computer-aided

Engineering Tools

- Thermal Simulation
- Circuit Simulation
- EMI Field Simulation
- Detailed Mechanical Design
- PCB Layout and Tracking
- Structural Simulation

For additional information, visit
advancedenergy.com

Advanced Energy Computer-aided Engineering Tools

Δ
 AC-DC Power Supplies

As an industry leader in distributed power supplies, Advanced Energy provides an exceptionally wide range of AC-DC power conversion solutions

LOW POWER

Low Power

Open Frame 1 to 4 Outputs

20 to 650 W

SPECIAL FEATURES

All models feature

- Industry standard footprints
- Wide-range AC input
- Full power to $50^{\circ} \mathrm{C}$
- High demonstrated MTBF
- Over-voltage protection
- Over-load protection

Many models feature

- EN61000-3-2 compliance
- Supervisory outputs ($5 \mathrm{~V} / 12 \mathrm{~V}$)
- Wide-adjust floating $4^{\text {th }}$ output
- Single wire current share
- Medical approvals
- Remote sense
- Adjustable outputs
- Power fail
- Wide-adjust on single output models
- Derated operation to $80^{\circ} \mathrm{C}$

Low Power						
Output Power	Output				Size W x L x H (mm)	Model
[Forced Air] Free Air	V1	V2	V3	V4		
[40 W] 25 W	NPS20-M Series ${ }^{3}$					
	5 V @ 5 A [8 A] ${ }^{2}$				$\begin{aligned} & 2 \times 4 \times 1 \text { in } \\ & (50.8 \times 101.6 \times 25.4) \end{aligned}$	NPS22-M
	12 V @ $2.1 \mathrm{~A}[3.3 \mathrm{~A}]^{2}$					NPS23-M
	$15 \mathrm{~V} @ 1.7 \mathrm{~A}[2.7 \mathrm{~A}]^{2}$					NPS24-M
	24 V @ 1 A [1.8 A] ${ }^{2}$					NPS25-M
	48 V @ $0.5 \mathrm{~A}[0.84 \mathrm{~A}]^{2}$					NPS28-M
[55 W] 40 W	LP40 Series ${ }^{3}$					
	3.3 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{2}$				$\begin{aligned} & 3 \times 5 \times 1.2 \text { in } \\ & (76.2 \times 127 \times 30.5) \end{aligned}$	LPS41
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{2}$					LPS42
	$12 \mathrm{~V} @ 3.3 \mathrm{~A}[4.5 \mathrm{~A}]^{2}$					LPS43
	15 V @ 2.6 A [3.6 A] ${ }^{2}$					LPS44
	24 V @ 1.6 A [2.3 A] ${ }^{2}$					LPS45
	48 V @ $0.9 \mathrm{~A}[1.2 \mathrm{~A}]^{2}$					LPS48
	3.3 V @ 4 A [7 A]	5 V @ 1.5 A [2 A]	+12 V @ 0.5 A [0.7 A]			LPT41
	5 V @ 4 A [5 A]	12 V @ 2 A [2.5 A]	-12 V @ 0.5 A [0.7 A]			LPT42
	5 V @ 6 A [8 A]	12 V @ 0.5 A [0.7 A]	-12 V @ 0.5 A [0.7 A]			LPT43
	5 V @ 4 A [5 A]	12 V @ 2 A [2.5 A]	-5 V @ 0.5 A [0.7 A]			LPT44
	5 V @ 4 A [5 A]	15 V @ 2 A [2.5 A]	-15 V @ 0.5 A [0.7 A]			LPT45
	5V@4 A [5A]	24 V @ 1 A [1.5 A]	+12 V @ 0.5 A [0.7 A]			LPT46
	5 V @ 4 A [5 A]	24 V @ 1 A [1.5 A]	-12 V @ 0.5 A [0.7 A]			LPT47
[55 W] 45 W	NPT40-M Series ${ }^{3}$					
	5 V @ 5 A [8 A]	$12 \mathrm{~V} @ 2.5 \mathrm{~A}$ [3 A]	-12 V @ 0.5 A [0.7 A]		$\begin{aligned} & 2 \times 4 \times 1 \text { in } \\ & (50.8 \times 101.6 \times 25.4) \end{aligned}$	NPT42-M
	5 V @ 5 A [8 A]	15 V @ 2 A [2.4 A]	-15 V @ 0.5 A [0.7 A]			NPT43-M
	5 V @ 5 A [8 A]	24 V @ 1 A [1.5 A]	$12 \mathrm{~V} @ 0.5 \mathrm{~A}$ [0.7 A$]$			NPT44-M

[] Rating with 30 CFM of air
1 Optional cover/enclosure
2 Floating output
3 This product is a component power supply and is only for inclusion by professional installers within other equipment and must Not be operated as a standalone product. EMC compliance to appropriate standards must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is not intended for sale to end users.

[] Rating with 30 CFM of air
1 Optional cover/enclosure
2 Floating output
3 This product is a component power supply and is only for inclusion by professional installers within other equipment and must Not be operated as a standalone product. EMC compliance to appropriate standards must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is not intended for sale to end users.

LOW POWER

Low Power						
[Forced Air] Free Air	V1	V2	v3	V4	Size W \times L \times H (mm)	Model
[150 W] 100 W	TLP150 Series ${ }^{3}$					
	12 V @ $12.5 \mathrm{~A}^{2}$				$\begin{aligned} & 3 \times 5 \times 1.25 \mathrm{in} \\ & (76.2 \times 127 \times 31.75) \end{aligned}$	TLP150R-96S12J
	24V@ $6.3 \mathrm{~A}^{2}$					TLP150R-96S24J
	36 V @ $4.2 \mathrm{~A}^{2}$					TLP150R-96S36J
	48 V @ $3.2 \mathrm{~A}^{2}$					TLP150R-96S48J
[150 W] 100 W	LPS100-M Series ${ }^{3}$					
	5 V @ 16 A [24 A] ${ }^{2}$				$\begin{aligned} & 2 \times 4 \times 1.29 \text { in } \\ & (50.8 \times 101.6 \times 33) \end{aligned}$	LPS102-M
	$12 \mathrm{~V} @ 8.3 \mathrm{~A}$ [12.5 A] ${ }^{2}$					LPS103-M
	$15 \mathrm{~V} @ 6.7 \mathrm{~A}[10 \mathrm{~A}]^{2}$					LPS104-M
	24 V @ 4.2 A [6.3 A] ${ }^{2}$					LPS105-M
	$48 \mathrm{~V} @ 2.1 \mathrm{~A}[3.1 \mathrm{~A}]^{2}$					LPS108-M
	54 V @ 1.85 A [2.8 A] ${ }^{2}$					LPS109-M
[175 W] 110 W	LP170 Series ${ }^{3}$					
1	$\begin{aligned} & 5 \mathrm{~V} @ 22 \mathrm{~A}[35 \mathrm{~A}]^{2} \\ & (2.5 \text { to } 6 \mathrm{~V}) \\ & \hline \end{aligned}$				$\begin{array}{\|l\|} \hline 4.25 \times 8.5 \times 1.5 \text { in } \\ (108 \times 215.9 \times 38.1) \end{array}$	LPS172
	$\begin{aligned} & \hline 12 \mathrm{~V} @ 9.1 \mathrm{~A}[15 \mathrm{~A}]^{2} \\ & (6 \text { to } 12 \mathrm{~V}) \\ & \hline \end{aligned}$					LPS173
	$\begin{aligned} & 15 \mathrm{~V} @ 7.3 \mathrm{~A}[12 \mathrm{~A}]^{2} \\ & (12 \text { to } 24 \mathrm{~V}) \end{aligned}$					LPS174
	$\begin{aligned} & 24 \mathrm{~V} @ 4.5 \mathrm{~A}[7.5 \mathrm{~A}]^{2} \\ & (24 \text { to } 54 \mathrm{~V}) \end{aligned}$					LPS175
[200 W] 100 W	LPQ200-M Series ${ }^{3}$					
	3.3 V @ 13 A [18 A]	$5 \mathrm{~V} @ 13 \mathrm{~A}$ [18 A]	12 V @ 5 A [9 A]	-12 V @ 1 A [2 A]	$\begin{aligned} & 3 \times 5 \times 1.32 \text { in } \\ & (76.2 \times 127 \times 33.6) \end{aligned}$	LPQ201-M
	5 V @ 13 A [18 A]	12 V @ 5 A [9 A]	24 V @ 1.5 A [3 A]	-12 V @ 1 A [2 A]		LPQ202-M
[250 W] 125 W	LPS200-M Series ${ }^{3}$					
	5 V @ 20 A [40 A] ${ }^{2}$				$\begin{aligned} & 3 \times 5 \times 1.32 \text { in } \\ & (76.2 \times 127 \times 33.6) \end{aligned}$	LPS202-M
	$12 \mathrm{~V} @ 10.3 \mathrm{~A}[20.8 \mathrm{~A}]^{2}$					LPS203-M
	$15 \mathrm{~V} @ 8.3 \mathrm{~A}[16.6 \mathrm{~A}]^{2}$					LPS204-M
	24 V @ 5.2 A [10.4 A] ${ }^{2}$					LPS205-M
	48 V @ $2.6 \mathrm{~A}[5.2 \mathrm{~A}]^{2}$					LPS208-M

[] Rating with 30 CFM of air
1 Optional cover/enclosure
2 Floating output
 must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is not intended for sale to end users.

[] Rating with 30 CFM of air
1 Optional cover/enclosure
2 Floating output
 must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is not intended for sale to end users

Total Power

250 W

\# of Outputs

Single

Output

- 12 to 48 V
- 12 V Fan Output

Safety

- TUV 62368-1 / 60601-1
- UL/CSA 62368-1/60601-1
- CB IEC 62368-1 / IEC 60601-1
- CE EN60601-1-2 / LVD / RoHS
- CCC

CPS250-M

Open Frame 250 W AC-DC Power Supply

SPECIAL FEATURES

- Up to 250 W forced air, 155 W natural convection

■ 2" $\times 4$ " $\times 1.29$ " open frame package

- Class I and II operation
- < 500 mW No-load power consumption
- $+10 \%$ output adjustment
- 12 V fan output
- Over-voltage, over-current, and over-temperature protection
- Start-up at $-40^{\circ} \mathrm{C}$ ambient temperature
- Medical and ITE safety approvals
- 2X MOPP, type BF ready
- High efficiency: 93\% typical
- > 2.2 MHrs MTBF
- 3-year warranty
- LPX100 enclosure kit available

Electrical Specifications
Input
Input Range
Frequency
Inrush Current
Efficiency
Input Fusing
No Load Power 264 VAC
Leakage Current
Power Factor and Harmonics
Hold up Time
In to 440 Hz (cold start)

Environmental Specifications	
Operating Temperature	-20 to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ start-up $)$
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Humidity	5% to 90% Non-condensing
Altitude	Operating: Up to $5000 \mathrm{~m}(3000$ for medical) Non-Operating: Up to $16,000 \mathrm{~m}$

Electrical Specifications		
Output Rating	See ordering information below	
Fan Output	12 V @ 500 mA	J2 connector
Output Set Point	$\pm 0.5 \%$	Factory set point
Regulation Range	Main Output: $\pm 2 \%$ 12 V Fan Output	Combined set point; line and load variations measured at output pins.
Maximum Power	250 W Forced Air (300 LFM) 155 W Natural Convection (100% power up to $50^{\circ} \mathrm{C}$)	Default VR2 position is for forced air operation. Adjust VR2 full counter clockwise for Natural Convection operation.
Peak Current During Natural Convection	+20\% of Max Continuous Load Current (natural convection)	Peak should be < 30 s with max duty cycle of 10\%
Output Adjustability	-0\% / +10\%	Adjust via VR1 Trimpot
Over-voltage Protection (OVP)	130\% to 150\% of Nominal output	Latching; requires AC recycle to restart
Over-current Protection (OCP)	Forced Air: 110\% typical Natural Convection: 135\% typical	Shutdown; auto recovery
Short Circuit Protection	< 50 mOhm	Shutdown; auto recovery
Over-temperature protection (OTP)	Refer to TRN for component hot spots and temperature limits.	Shutdown; auto recovery with hysteresis
Isolation Voltage	4000 VAC (input to output) 1500 VAC (input to PE; output to PE)	-
5 V Standby Output (-M1 option)	100 mA	Available on 12 V model (CPS253-M1) only

Ordering Information							
Model Number	Output Voltage	Minimum Load	Max Continuous Load (Free Air)	Peak Load (Free Air) ${ }^{1}$	Max Continuous Load (Forced Air) ${ }^{2}$	Regulation	Ripple (p-p)
CPS253-M	12 V	0 A	12.92 A	15.5 A	20.83 A	$\pm 2 \%$	120 mV
CPS253-M1	12 V	0 A	12.92 A	15.5 A	20.83 A	$\pm 2 \%$	120 mV
CPS255-M	24 V	0 A	6.45 A	7.74 A	10.42 A	$\pm 2 \%$	240 mV
CPS258-M	48 V	0 A	3.23 A	3.88 A	5.21 A	$\pm 2 \%$	480 mV

[^0]Consult the Technical Reference Notes for complete specifications

Total Power

650 W

\# of Outputs

Single

Output

- 12 to 48 V
- 5 V Standby
- 12 V Fan Output

Safety

- TUV

62368-1 / 60601-1

- UL/CSA

62368-1 / 60601-1

- CB IEC 62368-1 / IEC 60601-1
- CE EN60601-1-2 / LVD / RoHS
- DEMKO EN60950-1
- CCC

CNS650-MU

Open Frame
 650 W AC-DC Power Supply

SPECIAL FEATURES

- Up to 650 W forced air, 400 W natural convection
- 4" x 6" x 1.54 " U-channel construction
- < 500 mW No-load power consumption
- $+15 \%$ output adjust
- 5 V standby output
- 12 V fan output
- Power_OK; VIN_Good; Remote Inhibit; Fan_Fail; Fan_Tachco; Remote Sense
- Over-voltage, over-current, and over-temperature protection
- Start-up at $-40^{\circ} \mathrm{C}$ ambient temperature
- Medical and ITE safety approvals
- 2X MOPP, type BF ready
- High efficiency: 93\% typical
- Active current share / Built in o-ring
- Digital I ${ }^{2} \mathrm{C} /$ PMBus protocol
- > 1.3 MHrs MTBF
- 3-year warranty
- 80 PLUS certified (-ME model)

Electrical Specifications Input	
Input Range	$\begin{array}{\|l\|} \hline 90 \text { to } 264 \text { VAC } \\ 127 \text { to } 350 \text { VDC } \end{array}$
AC Input Turn-on	87 to 90 VAC
VAC Input Turn-off	80 to 82 VAC
Frequency	47 to 63 Hz (360 to 440 Hz)
Inrush Current	50 Apk (cold start)
Efficiency	93\% Typical 100\% Load
Input Fusing	Internal 12 A fuses on L and N lines
No Load Power	< 500 mW - main output disabled
Leakage Current	< $300 \mu \mathrm{~A}, 264$ VAC, 60 Hz
Power Factor and Harmonics	0.99 typical; meets EN61000-3-2
Hold up Time	25 ms @ 400 W

Environmental Specifications	
Operating Temperature	-20 to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ Start-up)
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Humidity	5% to 95% Non-condensing
Altitude	Operating: Up to $5000 \mathrm{~m}(3000$ for medical) Non-Operating: Up to $10,000 \mathrm{~m}$

Electrical Specifications Output Rating	See ordering information below	
5 V Standby Output	5 V @ 1 A (Nat Convection) 5 V @ 2 A (Forced Air)	J304
Fan Output	12 V @ 0.5 A (Nat Convection) 12 V @ 1.0 A (Forced Air)	J306 or J304
Regulation Range	Main output: $\pm 2 \%$ 12 V fan output	Combined set point; line and load variations measured at output pins
Maximum Power	650 W Forced Air (~400 LFM) 400 W Nat Convection (-MU Suffix) 360 W Nat Convection (-MF Suffix)	Power Derating applies $>50^{\circ} \mathrm{C}$ ambient
Peak Load	750 W Forced Air (~400 LFM)	Any duty cycle for as long as Pout Average $\leq 650 \mathrm{~W}$
Output Adjustability	-0\% / +15\%	Adjust via VR408 Trimpot
Over-voltage Protection (OVP)	130\% to 150\% of Nominal output	Latching; requires AC recycle to restart
Over-current Protection (OCP)	115% to 170\% of rated output current	Constant current up to 50% of rated O/P Voltage then goes to hiccup mode. Autorecovers when fault is removed
Short Circuit Protection	< 50 mOhm	Hiccup/Non Latching; auto recovery
Over-temperature Protection (OTP)	Refer to TRN for component hot spots and temperature limits	Shutdown; auto recovery with hysteresis
Isolation Voltage	4000 VAC (input to output) 1500 VAC (input to PE; output to PE)	-

Ordering information									
Model Number	Output Voltage	Vout Adjust Range ($-0 \% /+15 \%$)	Minimum Load	Max Continuous Load (Free Air)	Max Peak Load (Free Air) 1	Max Continuous Load $\left(\right.$ Forced Air) ${ }^{2}$	Max Peak Load (Forced Air) ${ }^{2}$	Regulation ${ }^{3}$	$\begin{aligned} & \text { Ripple } \\ & (p-p)^{4} \end{aligned}$
CNS653-ME ${ }^{5,6}$	12 V	12 to 13.8 V	0 A	54.2 A	62.5 A	NA	NA	$\pm 2 \%$	120 mV
CNS653-MF ${ }^{5}$	12 V	12 to 13.8 V	0 A	30.0 A	54.2 A	54.2 A	62.5 A	$\pm 2 \%$	120 mV
CNS653-MU	12 V	12 to 13.8 V	0 A	33.3 A	54.2 A	54.2 A	62.5 A	$\pm 2 \%$	120 mV
CNS655-MU	24 V	24 to 27.6 V	0 A	16.7 A	27.1 A	27.1 A	31.3 A	$\pm 2 \%$	240 mV
CNS658-MU	48 V	48 to 55.2 V	0 A	8.3 A	13.5 A	13.5 A	15.6 A	$\pm 2 \%$	480 mV

[^1]Convection/Conduction Mounting 250 W

SPECIAL FEATURES

- Wide operating temperature range suited for both outdoor and indoor applications
- 250 W fanless power supply with zero derating up to $85^{\circ} \mathrm{C}$ baseplate
- IP64 rated enclosure
- Conduction or convection mounting
- Differential remote sense
- Output adjust
- Output on/off (Positive or negative logic user selectable)

Total Power

250 W
\# of Outputs
Single
Output
$12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$
Size
4" x 7" x 1.1"
Compliance

- EMI Class B
- EN61000 Immunity

Safety

- UL + CSA 60950-1
- TÜV 62368-1 / 60601-1 /

61347-1; 2-13

- China CCC 1
- CB Scheme IEC 62368-1 / IEC 61347-1; 2-13 / IEC 60601-1

1 China CCC approval applies to part numbers with "-xxE" suffixes only.

Environmental Specifications	
Operating Temperature	Suffix 4P (conduction): -40 to $+85^{\circ} \mathrm{C}$ baseplate temperature Suffix 7 PP (convection): -40 to $+85^{\circ} \mathrm{C}$ ambient temperature
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$
Humidity	10% to 100% (condensing \& Non-condensing)
Altitude	Operating: $13,000 \mathrm{ft}$ Non-operating: $50,000 \mathrm{ft}$
Shock	IEC 68-2-27
Vibration	IEC 68-2-6 / IEC 721-3-2
Ingress Protection	IP64 rated
MTBF (calculated)	$>780,000$ hours at 100% load; Low line;
Telcordia SR332	

112 V output compliance to CE102 requires external filter. Consult Technical Reference Notes.

Electrical Specifications

Output Rating	$\begin{aligned} & 12 \text { V @ } 20.83 \mathrm{~A} ; 24 \mathrm{~V} @ 10.4 \mathrm{~A} ; \\ & 48 \mathrm{~V} @ 5.2 \mathrm{~A} \end{aligned}$	-
Set Point	$\pm 0.2 \%$	Factory set point
Total Regulation Range	$\pm 2 \%$	Line/load/temperature
Rated Load	250 W maximum	-
Minimum Load	0 A Load	No loss of regulation
Capacitive Load	0 to $330 \mu \mathrm{~F} / \mathrm{amp}$	-
Constant Output Voltage Adjustment Range	$\begin{aligned} & 12 \mathrm{~V}:+10 /-10 \% ; 24 \mathrm{~V}:+14.6 /-15 \% ; \\ & 48 \mathrm{~V}:+15 \% /-15 \% \end{aligned}$	Adjust via VR2
Constant Output Current Adjustment Range	+0/-50\%	Adjust via VR1 CC mode supported from Vo nominal down to 80% Vo
Output Ripple And Noise	1\%	See Note 1
Transient Response	$\pm 5 \%$ Vo max transient; recovery < $500 \mu \mathrm{~s}$ max	50\% load step @ 1 A/ us Step load verified at: 50% to 100% load; 90 to 264 VAC input; capacitive load from 0 to $330 \mu \mathrm{~F} / \mathrm{Amp}$
Remote Sense	Capable of stable offset of $\pm 0.5 \mathrm{VDC}$ at output cable termination	+SENSE (red wire); -SENSE (black wire)
Output On/Off	Remote on/off referenced to secondary side. Positive or negative logic user selectable via CN2. Factory default is positive logic.	On/off (orange wire); on/off return (white wire)
Over-load Protection (OCP)	< 150\% lo	Auto recovery
Over-voltage Protection (OVP)	110\% to 135\% Vo	Latching mode; requires input AC recycle
Over-temperature Protection (OTP)	-	Auto recovery; hiccup mode
Output Isolation	4000 VAC Input to Output; 1500 VAC Input to Ground; 500 VAC Output to Ground	-

Ordering Information						
Model Number	Output	Adjustment		Current	Output Ripple	Combined Line/
		Range	Min	Max		Load Regulation
LCC250-12U-4P	12 V	$\pm 10 \%$	0 A	20.8 A	1\%	$\pm 2 \%$
LCC250-12U-4PE ${ }^{3}$	12 V	$\pm 10 \%$	0 A	20.8 A	1\%	$\pm 2 \%$
LCC250-12U-7P	12 V	$\pm 10 \%$	0 A	20.8 A	1\%	$\pm 2 \%$
LCC250-12U-7PE ${ }^{3}$	12 V	$\pm 10 \%$	0 A	20.8 A	1\%	$\pm 2 \%$
LCC250-24U-4P	24 V	+14.6/-15\%	0 A	10.4 A	1\%	$\pm 2 \%$
LCC250-24U-4PE ${ }^{3}$	24 V	+14.6/-15\%	0 A	10.4 A	1\%	$\pm 2 \%$
LCC250-24U-7P	24 V	+14.6/-15\%	0 A	10.4 A	1\%	$\pm 2 \%$
LCC250-24U-7PE ${ }^{3}$	24 V	+14.6/-15\%	0 A	10.4 A	1\%	$\pm 2 \%$
LCC250-48U-4P	48 V	$\pm 15 \%$	0 A	5.2 A	1\%	$\pm 2 \%$
LCC250-48U-4PE ${ }^{3}$	48 V	$\pm 15 \%$	0 A	5.2 A	1\%	$\pm 2 \%$
LCC250-48U-7P	48 V	$\pm 15 \%$	0 A	5.2 A	1\%	$\pm 2 \%$
LCC250-48U-7PE ${ }^{3}$	48 V	$\pm 15 \%$	0 A	5.2 A	1\%	$\pm 2 \%$

1 Output ripple measured at the end of the output cable terminated with $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitor.
2 Additional external capacitance required to meet the indicated Output Ripple Limits. Please check the Technical Reference Notes.
3 China CCC approval applies to part numbers with "-xxE" suffixes only.
412 V output compliance to CE102 requires external filter. Consult Technical Reference Notes.

LCC600
Convection/Conduction Mounting 600 W

SPECIAL FEATURES

- Baseplate cooled ■ With +5 V standby @ 1.5 A
- -40 to $85^{\circ} \mathrm{C}$ operating baseplate temperature
- No derating up to $85^{\circ} \mathrm{C}$ baseplate temperature
- Adjustable output
- 10.6 W per in ${ }^{3}$
- Differential remote sense
- Full DSP controlled
- Optional IP65 ("-4P" suffix) variant
- Optional 277 VAC Nominal input ("H" suffix) variant
- Active Ishare
- PMBus ${ }^{\text {TM }}$
- Industrial/Medical safety (Suited for
- EMI Class B BF Type applications)

Total Power
600 W
\# of Outputs
Single
Output
$12 \mathrm{~V}, 28 \mathrm{~V}, 36 \mathrm{~V}, 48 \mathrm{~V}$
Size
4" x 9 " x 1.57 "
Safety

- UL + CSA 60950-1 / 60601-1 3rd Ed
- TÜV 62368-1/60601-1
- China CCC
- CB Scheme 62368-1 / 60601-1 Certs
- UL 8750 / TUV EN 61347-1;
-2-13 / IEC 61347-1; -2-13 (48 V output)

Electrical Specifications Input
Input Range
Frequency
90 to 264 VAC (U version) 180 to 305 VAC (H version)
Input Fusing
Inrush Current
Power Factor
Harmonics
< 22.5 A RMS on both input lines (U Suffix)
Input Current
Hold up Time
Isolation
Meets EN610 MIL-STD-461F EMI: CE101, CE102, CS101, CS114, CS115 (w/ ext filter)

Environmental Specifications	
Operating Temperature	-40 to $85^{\circ} \mathrm{C}$ baseplate
Humidity	10% to 95%
Altitude	$5000 \mathrm{~m}(16,402 \mathrm{ft})$ operating
Shock	MIL-STD-810F 516.5 Procedure I, VI
Vibration	MIL-STD-810F 514.5 CAT 4, 10
IP Rating	Optional IP65 rated enclosure ("4P" suffix)
MTBF	>2 MHrs, $25^{\circ} \mathrm{C}$ per SR-332 Issue 3

Ordering Information											
Model Number ${ }^{1}$	AC Input	Output Setpoint (V)	Setpoint Tolerance	Adjustment Range	Output Current [A]		Max O/P Power [W]	Typical Efficiency²	Standby Output	Combined Line/Load Regulation	Output Ripple
					Min	Max					
LCC600-48U-9P	90 to 264	48	$\pm 0.5 \%$	44 to 54	0	12.5	600	93\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-48H-9P	180 to 305	48	$\pm 0.5 \%$	44 to 54	0	12.5	600	93\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-36U-9P	90 to 264	36	$\pm 0.5 \%$	32 to 38	0	16.7	600	92\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-36H-9P	180 to 305	36	$\pm 0.5 \%$	32 to 38	0	16.7	600	92\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-28U-9P	90 to 264	28	$\pm 0.5 \%$	24 to 30	0	25	600	93.5\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-28H-9P	180 to 305	28	$\pm 0.5 \%$	24 to 30	0	25	600	93.5\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-12U-9P	90 to 264	12	$\pm 0.5 \%$	12 to 15	0	50	600	92\%	5 VDC @ 1.5 A	2\%	1\%
LCC600-12H-9P	180 to 305	12	$\pm 0.5 \%$	12 to 15	0	50	600	92\%	5 VDC @ 1.5 A	2\%	1\%

1 Change suffix "-9P" to "-4P" for IP65 rated enclosure with fly lead wires.
Change suffix "-4P" to "-4PR" for IP65 rated enclosure with right angle fly lead wires (applies to $28 \mathrm{~V}, 36 \mathrm{~V}, 48 \mathrm{~V}$). Change suffix " 4 P " to " 4 PV " for cables without control signal (applies to $28 \mathrm{~V}, 36 \mathrm{~V}$ and 48 V).
2 Typical Efficiency at high line, factory default voltage and full load.
3 When the output voltage is set as low as 24 V , it can provide a current of up to 25 A (the maximum power is 600 W) At the default output voltage of 28 V , the output current is up to 21.43 A (the maximum power is 600 W).

LCC1200
 Convection/Conduction Mounting 1200 W

SPECIAL FEATURES

- 1200 W full power at elevated temperatures
- Wide operating temperature range (-40 to $85^{\circ} \mathrm{C}$ baseplate)
- Adjustable output
- Remote output On/Off
- AC_OK; DC_OK signals
- 5 V standby voltage
- Active current share
- Conduction-cooled/fanless
- $I^{2} \mathrm{C} /$ PMBus
- ITE Safety
- Active power factor correction

Total Power:

1200 W

\# of Outputs

Single

Outputs:

24, 28, 36, 48 Vdc

Safety

- UL + CSA: 62368-1
- Demko: 62368-1
- CB Scheme: 60950-1 and 62368-1
- China CCC
- CE Mark
- UKCA Mark

Electrical Specifications Input	
Input Range	90 to 264 VAC (Safety rating: 100 to 240 VAC) 127 to 374 VDC 2 1200 W at 180-264 VAC 700 W at 90-132 VAC
Frequency	47 to 63 / 440 Hz (Safety rating: $50 / 60 \mathrm{~Hz}$)
Input Fusing	Single Fuse
EMI/RF\| ${ }^{3}$	FCC Class B, CISPR22/EN55022 Class B
Inrush current	≤ 25 A peak at $264 \mathrm{VAC}, 25^{\circ} \mathrm{C}$ ambient temperature, cold start, excluding X caps
Power Factor	0.99 typical
Harmonics	Meets EN61000-3-2 Class A and Class C^{1}
Input Current	< 8 Arms @ 180 VAC
Hold up Time	20 ms min for Main Output (230 VAC) @ 100\% Load
Efficiency	Typical @ 230 VAC; 100\% Load; 28 VDC 93.5\% Efficiency at $25^{\circ} \mathrm{C}$ baseplate temperature ($35^{\circ} \mathrm{C}$ ambient)
Leakage Current	< 3.5 mA max per IEC 62368-1 Standard
Isolation Voltage	PRI-SEC: 3,000 VAC PRI-Chassis: 1,500 VAC SEC-Chassis: 500 VAC

1 Meets Class C at 100% load.
${ }^{2}$ DC input rating not part of product's safety approval.
3 On the -9P units, it is recommended to use a snap-on ferrite Wurth pn 74271222 (or equivalent) on the AC input cable to comply with EMI radiated spec.

Environmental Specifications	
Operating Temperature Range	-40 to $+85^{\circ} \mathrm{C}$ Baseplate temperature
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$
Humidity	10% to 95%
Altitude	$16,402 \mathrm{ft}$ (Operating) / 50,000 ft (Non-Operating)
Shock	MIL-STD-810F 516.5 Procedure I, VI
Vibration	MIL-STD-810F 514.5 Cat. 4, 10
Ingress Protection	IP65 (for suffix "-4P")
MTBF (Calculated)	$>2 \mathrm{M} \mathrm{Hrs}, 25^{\circ} \mathrm{C}$ per SR-332 Issue 3
Electromagnetic Immunity	Designed to meet EN61000-4-3, -4, -5, -8, -11 (Level 3); EN61000-4-2 (Level 4); EN55035

Ordering Information								
SERIES	Nominal Output Voltage	Trimming Range		Setpoint	Pout, Max	lout, Max	Output Ripple	Line/Load/Temp Regulation
		Minimum	Maximum					
LCC1200-28U-9P24	24	24	24	$\pm 0.5 \%$	1200	50.0	1\%	2\%
LCC1200-28U-9P	28	24	30	$\pm 0.5 \%$	1200	42.9	1\%	2\%
Future Models								
LCC1200-36U-xxxx	36	32	38	$\pm 0.5 \%$	1200	33.3	1\%	2\%
LCC1200-48U-xxxx	48	44	54	$\pm 0.5 \%$	1200	25.0	1\%	2\%

[^2]

Total Power

$\begin{array}{ll}\text { CX06S } & 600 \mathrm{~W} \\ \text { CX06M } & 600 \mathrm{~W}\end{array}$

Slots

4, 4

Cooling

No fan featured, convection-cooled

Parameters

$215.9 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 39.1 \mathrm{~mm}$

(8.5 in $x 4.5$ in $\times 1 \mathrm{U}$)

Certification and Compliance

Medical

- IEC60601-1 3rd edition, IEC60601-1-2 4th edition (EMC)
- Dual fused
- 2 MOPP

Industrial

- IEC60950, IEC62368-1
- SEMI F47 ${ }^{1}$

Defense/Aero

- MIL-STD-810G

1 SEMI F47 compliant at input voltages > 180 VAC. Consult Advanced Energy for details.

CoolX ${ }^{\circ} 600$ Series

Fanless, Natural Convection-Cooled Modular Power Supply

SPECIAL FEATURES

No Fan Featured

- 600 W with 100% natural convection cooling
- No base plate needed
- No acoustic noise or vibrations

Reliability

- MTBF > 400,000 hours, 25% better than today's leading solutions
- High input surge protection 4 kV line to PE for harsh environments
- Reverse energy protection - No blocking diodes required
- 24 W always ON auxiliary power output

TYPICAL APPLICATIONS

Medical

- Clinical diagnostic equipment, medical lasers, dialysis equipment, radiological imaging, clinical chemistry

Industrial

- Test and measurement, industrial machines, automation equipment, printing, telecommunications, audio equipment
- Safety approved to 5000 m altitude
- > 94\% efficiency
- Five-year warranty

Flexibility

- Analog and digital management - PMBus ${ }^{T M}$ monitoring and control capability
- Field-configurable - plug and play power
- Series and parallel outputs - higher voltages/currents
- Mounting options - base/side and DIN-Rail mounting

Hi Rel

- Harsh industrial electronics, radar (navaland ground-based), communications, test and measurement

Environmental Specifications	Operates to specification below $-20^{\circ} \mathrm{C}$ after 10 min warm-up, -40 to $85^{\circ} \mathrm{C}$
Operating Temperature	-40 to $85^{\circ} \mathrm{C}$
Storage Temperature	See derating curves
Derating	Non-condensing, 5 to $95 \% \mathrm{RH}$
Relative Humidity	MIL-STD-810G Method 514.6
Shock and Vibration	5000 m
Altitude	

CoolX CoolMods Table				
Parameter	Vnom (V)	Set Point Adjust Range (V)	$\operatorname{Imax}(\mathrm{A})$	Power (W)
Single Output Modules (1 Slot)				
CmA	5	2.5 to 6.0	21.0	105
CmB^{1}	12	6.0 to 15.0^{2}	15.0	180
CmC	24	15.0 to 28.0	8.3	200
CmD	48	28.0 to $50.4{ }^{3}$	4.2	200
High Power Modules (3 Slot)				
CmE ${ }^{4}$	24	24 to 25.2	25.0	550*
CmF^{4}	48	48 to 50.4	12.5	550*
Dual Output Modules (1 Slot)				
CmG ${ }^{5} \mathrm{~V}$	24	3.0 to 30.0	3.0	90
	24	3.0 to 30.0	3.0	90
$\mathrm{CmH}^{6} \mathrm{~V}$	5	3.0 to 6.0	6.0	36
	24	3.0 to 30.0	3.0	90
Wide Trim Modules (1 Slot)				
CmA-W01	5	1.0 to 6.0	21.0	105
CmB-W01	12	1.0 to 15.0^{2}	15.0	180
CmC-W01	24	2.0 to 28.0	8.3	200
CmD-W01	48	3.0 to 58.0^{3}	4.2	200
High Voltage Modules (1 Slot)				
CmK ${ }^{7}$	200	175 to 205	0.6	132

1 Full dynamic specifications may Not be met at full load when output voltage is trimmed above 13 V
2 Max Trim 14 V when used with High Power Module
3 Max Trim 56 V when used with High Power Module
4 a) Only one High Power module (CmE or CmF) can be used per CoolPac
 for details or support.
5 For the CmG module the max combined power of both outputs is 120 W
6 For the CmH module the max combined power of both outputs is 100 W

* Max Power of CoolPac is 550 W when High Power Module is used
** SEMI F47 compliant at input voltages > 180 VAC. Consult Advanced Energy for details
7 CmK module cannot be used in the same pack as a CmE or CmF module

Total Power

- CX10S 1000 W
- CX10M 1000 W

Slots

6, 6

Cooling

No fan featured

Parameters

$259.5 \mathrm{~mm} \times 164 \mathrm{~mm} \times 40.6 \mathrm{~mm}$

(10 in $\times 6.5$ in $\times 1 \mathrm{U}$)
Certification and Compliance

Medical

- IEC60601-1 3rd edition, IEC60601-1-2 4th edition (EMC)
- 2 MOPP
- Dual fused

Industrial

- IEC60950, IEC62368-1
- SEMI F47 ${ }^{1}$

Defense/Aero

- MIL-STD-810G

1. SEMI F47 compliant at input voltages >180 VAC. Consult Advanced Energy for details.

CoolX 1000 Series

Fanless, Intelligent 1000 W Modular Power Supplies

SPECIAL FEATURES

No Fan Featured

- 1000 W with 100% natural convection cooling
- No base plate needed
- No acoustic noise or vibrations

Reliability

- MTBF > 2,900,000 hours
- High input surge protection 4 kV line to PE for harsh environments
- Reverse energy protection - No blocking diodes required
- 24 W standby power
- Safety approved to 5000 m altitude
- 93\% efficiency
- Five-year warranty

Flexibility

- Analog and digital management - PMBus ${ }^{T M}$ monitoring and control capability
- Field-configurable - plug and play power
- Series and parallel outputs - higher voltages/currents
- Mounting options - base/side and DIN-Rail mounting

TYPICAL APPLICATIONS

Medical

- Clinical diagnostic equipment, medical lasers, dialysis equipment, radiological imaging, clinical chemistry

Industrial

- Test and measurement, industrial machines, automation equipment, printing, telecommunications, audio equipment

Hi Rel

■ Harsh industrial electronics, radar (navaland ground-based), communications, test and measurement

Environmental Specifications

Operating Temperature	Operates to specification below $-20^{\circ} \mathrm{C}$ after 10 min warm-up, -40 to $85^{\circ} \mathrm{C}$
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Derating	See derating curves included in the CoolX1000 Designers Manual
Relative Humidity	Non-condensing, 5 to $95 \% \mathrm{RH}$
Shock and Vibration	MIL-STD-810G Method 514.6
Altitude	Max 5000 m

CoolX CoolMods				
Single Output Modules (1 Slot)	Vnom (V)	Set Point Adjust Range (V)	Imax (A)	Power (W)
CmA	5	2.5 to 6.0	21.0	105
CmB^{1}	12	6.0 to 15.0^{2}	15.0	180
CmC	24	15.0 to 28.0	8.3	200
CmD	48	28.0 to 58.0^{3}	4.2	200
High Power Modules (3 Slot)				
CmE ${ }^{4}$	24	24 to 25.2	25.0	600
CmF ${ }^{4}$	48	48 to 50.4	12.5	600
Dual Output Modules (1 Slot)				
$\begin{array}{cc}\text { CmG }{ }^{5} & \text { V1 } \\ & \text { V2 }\end{array}$	24	3.0 to 30.0	3.0	90
	24	3.0 to 30.0	3.0	90
 CmH^{6} V 1 V 2	5	3.0 to 6.0	6.0	36
	24	3.0 to 30.0	3.0	90
Wide Trim Modules (1 Slot)				
CmA-W01	5	1.0 to 6.0	21.0	105
CmB-W01	12	1.0 to 15.0^{2}	15.0	180
CmC-W01	24	2.0 to 28.0	8.3	200
CmD-W01	48	3.0 to 58.0^{3}	4.2	200
High Voltage Modules (1 Slot)				
CmK ${ }^{7}$	200	175 to 205	0.6	132

[^3]

CS1000 Series

Fanless, 1U, High Efficiency 1000 W Single Output Power Supplies

Total Power

- CS10S 1000 W
- CS10M 1000 W

Output Voltage

24 V, 48 V

Safety

Medical
■ IEC60601-1 3rd edition

- 2 MOPP
- Dual fused

Industrial

- IEC62368-1
- ISO9001:2015
- SEMI F47 ${ }^{1}$

1. SEMI F47 compliant at input voltages >180 VAC. Consult Advanced Energy for details.

SPECIAL FEATURES

No Fan Featured

- 1000 W with 100% natural convection cooling
- No base plate needed
- No acoustic noise or vibrations

Reliability

■ High input surge protection -4 kV line to PE for harsh environments

- Reverse energy protection - No blocking diodes required
- User selectable (5 V / 12 V) 24 W always ON auxiliary power output
- N+1 Redundancy Ready

TYPICAL APPLICATIONS

Medical

- Clinical diagnostic equipment, medical lasers, dialysis equipment, radiological imaging, clinical chemistry

Industrial

- Test and measurement, industrial machines, automation equipment, printing, telecommunications, audio equipment
- Can be paralleled for higher power
- Optional low leakage (<150 uA)
- Safety approved to 5000 m altitude
- Programmable start-up state (Default ON or Default OFF)
- > 94\% efficiency
- Five-year warranty

Flexibility

- Analog and digital management - PMBus ${ }^{\text {TM }}$ monitoring and control capability
- Mounting options: base/side and DIN-Rail mounting

Hi Rel

- Harsh industrial electronics, radar (navaland ground-based), communications, test and measurement

Environmental Specifications

Operating Temperature	Operates to specification below $-20^{\circ} \mathrm{C}$ after 10 min warm-up, -40 to $85^{\circ} \mathrm{C}$
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Derating	See derating curves
Relative Humidity	Non-condensing, 5 to 95% RH
Altitude	Max 5000 m
Vibration	$810 \mathrm{G}:$ Method 514.6, Procedure I (General Vibration). Category 4 Common Carrier (US Highway truck vibration exposure) Fig.514.6C-1. Category 4 Composite 2 wheeled trailer vibration exposure, Fig.514.6C-2. Category 4 Composite wheeled vehicle vibration exposure, Fig.514.6C-3.

	CS1000-24	CS1000-48
Power (W)	1000	1000
Output Voltage (V)	24	48
Output Current (A)	41.6	20.8
Medical Approval UL/EN60601-1, 3rd Edition	Yes	Yes
Industrial Approval UL/EN62368, 2nd Edition	Yes	Yes
Vnom (V)	24	48
Description	Convection-cooled U-channel	Convection-cooled U-channel
Output Adjustment Range (V)	22 to 28	44 to 56
Dynamic Vtrim Range (V)	22 to 28	44 to 56
lout Imax (A)	41.6	20.8
Remote Sense	Yes	Yes
Power Good	Yes	Yes
AC Good	Yes	Yes

LOW POWER

Low Power

External Power Adapters

10 to 100 W

SPECIAL FEATURES

All Models Feature

- Wide-range AC input
- High demonstrated MTBF
- Over-load protection
- Extensive safety approvals

Many Models Feature

- EN61000-3-2 compliance
- Medical approvals
- Thermal protection
- Energy Star/ErP
- DoE Level VI
- EU CoC v5 Tier 2

AC Input

- Wallmount
- U.S. - 2-prong
- China - 2-prong
- Europe - 2-prong
- United Kingdom - 3-prong
- Australia - 2-prong
- Korea - 2-prong
- Japan - 2-prong
- Interchangeable
- Freestanding
- IEC320 3-pin (C14) \& (C6)

DC Output

- Single output
- 2.5 mm barrel plug

[^4]
Healthcare AC-DC Power Supplies

Up to 24,000 W

Advanced Energy produces a wide range of AC-DC power supplies certified for use in medical equipment requiring lower safety ground leakage and higher isolation. The power supplies listed below are designed for use in Non-patient critical applications: bio-life science, medical, dental, imaging and laboratory applications such as immunoassay and in-vitro diagnostics machines, ultrasound, and mass analyzers. All of these power supplies are high efficiency switch-mode designs and feature medical safety approval to EN60601-1.

SPECIALFEATURES

All Models Feature

- Industry standard footprints
- Full power to $50^{\circ} \mathrm{C}$
- Medical approvals
- Wide-range AC input
- Remote sense
- Adjustable outputs
- Power fail
- High demonstrated MTBF
- Over-voltage protection
- Over-load protection
- Built-in EMI filtering

Many Models Feature

- EN61000-3-2 compliance
- Supervisory outputs ($5 \mathrm{~V} / 12 \mathrm{~V}$)
- Wide-adjust floating $4^{\text {th }}$ output
- Single wire current share
- Wide-adjust on single output models
- Voltage monitor/data logging
- Real-time parametric adjustment \& control

Healthcare AC-DC Power Supplies						
Output Power	Output					
[Forced Air] Free Air	V1	V2	V3	V4	Size W \times L x H (mm)	Model
[40 W] 25 W	NPS20-M Series ${ }^{3}$					
	5 V @ 5 A [8 A] ${ }^{2}$				$\begin{aligned} & 2 \times 4 \times 1 \text { in } \\ & (50.8 \times 101.6 \times 25.4) \end{aligned}$	NPS22-M
	$12 \mathrm{~V} @ 2.1 \mathrm{~A}[3.3 \mathrm{~A}]^{2}$					NPS23-M
	$15 \mathrm{~V} @ 1.7 \mathrm{~A}$ [2.7 A] ${ }^{2}$					NPS24-M
	24 V @ 1 A [1.8 A] ${ }^{2}$					NPS25-M
	$48 \mathrm{~V} @ 0.52 \mathrm{~A}[0.84 \mathrm{~A}]^{2}$					NPS28-M
	LP40-M Series ${ }^{3}$					
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{2}$				$\begin{aligned} & 3 \times 5 \times 1.2 \mathrm{in} \\ & (76.2 \times 127 \times 30.5) \end{aligned}$	LPS42-M
	$12 \mathrm{~V} @ 3.3 \mathrm{~A}[4.5 \mathrm{~A}]^{2}$					LPS43-M
	15 V @ $2.6 \mathrm{~A}[3.6 \mathrm{~A}]^{2}$					LPS 44-M
	24 V @ 1.6 A [2.3 A] ${ }^{2}$					LPS $45-\mathrm{M}$
	5 V @ 4 A [5 A]	12 V @ 2 A [2.5 A]	-12 V @ 0.5 A [0.7 A]			LPT42-M
	5 V @ 4 A [5 A]	15 V @ 2 A [2.5 A]	-15 V @ 0.5 A [0.7 A]			LPT45-M
[60 W] 45 W	NPS40-M Series ${ }^{3}$					
	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{2}$				$\begin{aligned} & 2 \times 4 \times 1 \text { in } \\ & (50.8 \times 101.6 \times 25.4) \end{aligned}$	NPS42-M
	$12 \mathrm{~V} @ 3.75 \mathrm{~A}[5 \mathrm{~A}]^{2}$					NPS43-M
	$15 \mathrm{~V} @ 3 \mathrm{~A}[4 \mathrm{~A}]^{2}$					NPS44-M
	$24 \mathrm{~V} @ 1.9 \mathrm{~A}$ [2.5 A] ${ }^{2}$					NPS45-M
	$48 \mathrm{~V} @ 0.94 \mathrm{~A}[1.25 \mathrm{~A}]^{2}$					NPS48-M

Options
[] Rating with 30 CFM of air
1 Optional cover/enclosure
2 Floating output
 standards must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is not intended for sale to end users.

HEALTHCARE AC-DC POWER SUPPLIES

Healthcare AC-DC Power Supplies						
Output Power	Output				Size W x L x H (mm)	Model
[Forced Air] Free Air	V1	V2	V3	V4		
[55 W] 45 W	NPT40-M Series ${ }^{3}$					
1	5 V @ 5 A [8 A]	$12 \mathrm{~V} @ 2.5 \mathrm{~A}$ [3 A]	-12 V @ 0.5 A [0.7 A]			NPT42-M
	5 V @ 5 A [8 A]	15 V @ 2 A [2.4 A]	-15 V @ 0.5 A [0.7 A]			NPT43-M
	5 V @ 5 A [8 A]	24 V @ 1 A [1.5 A]	12 V @ 0.5 A [0.7 A]			NPT44-M
[60 W] 60 W	NPS60-M Series ${ }^{3}$					
1	5 V @ $11 \mathrm{~A}^{2}$				$2 \times 4 \times 1$ in	NPS62-M
	12 V @ $5 \mathrm{~A}^{2}$ (Level VI Efficiency)					NPS63-M-006
	15 V @ $4 \mathrm{~A}^{2}$					NPS64-M
	24 V @ $2.5 \mathrm{~A}^{2}$					NPS65-M
[80 W] 60 W	LP60-M Series ${ }^{3}$					
1	12 V @ 5 A [6.7 A] ${ }^{2}$				$\begin{aligned} & 3 \times 5 \times 1.65 \text { in } \\ & (76.2 \times 127 \times 41.9) \end{aligned}$	LPS63-M
	15 V @ 4 A [5.3 A] ${ }^{2}$					LPS64-M
	24 V @ $2.5 \mathrm{~A}[3.3 \mathrm{~A}]^{2}$					LPS65-M
	5 V @ 7 A [8 A]	$12 \mathrm{~V} @ 3 \mathrm{~A}$ [3.5 A]	-12 V @ 0.7 A [1 A]			LPT62-M
	5 V @ 7 A [8 A]	15 V @ 2.8 A [3.3 A]	-15 V @ 0.7 A [1 A]			LPT63-M
[130 W]	LPT100-M Series ${ }^{3}$					
1	3.3 V @ [18 A]	5 V @ [9 A]	$12 \mathrm{~V} @[2.3 \mathrm{~A}]$		$\left\{\begin{array}{l} 2 \times 4 \times 1.28 \text { in } \\ (50.8 \times 101.6 \times 32.7) \end{array}\right.$	LPT101-M
	5 V @ [18 A]	12 V @ [9 A]	-12 V @ [2 A]			LPT102-M
	5 V @ [18 A]	$15 \mathrm{~V} @[7.2 \mathrm{~A}]$	-15 V @ [1.5 A]			LPT103-M
	5 V @ [18 A]	24 V @ [3 A]	12 V @ [2.3 A]			LPT104-M
[150 W] 100 W	LPS100-M Series ${ }^{3}$					
	5 V @ $16 \mathrm{~A}[24 \mathrm{~A}]^{2}$				$\begin{aligned} & 2 \times 4 \times 1.29 \text { in } \\ & (50.8 \times 101.6 \times 33) \end{aligned}$	LPS102-M
	12 V @ $8.3 \mathrm{~A}[12.5 \mathrm{~A}]^{2}$					LPS103-M
	$15 \mathrm{~V} @ 6.7 \mathrm{~A}[10 \mathrm{~A}]^{2}$					LPS104-M
	24 V @ 4.2 A [6.3 A] ${ }^{2}$					LPS105-M
	48 V @ 2.1 A [3.1 A] ${ }^{2}$					LPS108-M
	54 V @ 1.85 A [2.8 A] ${ }^{2}$					LPS109-M
[150 W] 100 W	TLP150 Series ${ }^{3}$					
	12 V @ $12.5 \mathrm{~A}^{2}$				$3 \times 5 \times 1.25$ in	$\begin{aligned} & \text { TLP150N- } \\ & \text { 99S12J } 4 \end{aligned}$
	24 V @ $6.3 \mathrm{~A}^{2}$				$\begin{aligned} & (177.8 \times 101.6 \times \\ & 31.75) \end{aligned}$	$\begin{aligned} & \text { TLP150N- } \\ & \text { 99S24J } \end{aligned}$

Options
[] Rating with 30 CFM of air
1 Optional cover/enclosure (see datasheet for increased dimensions)
2 Floating output
 standards must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is Not intended for sale to end users.
4 Replace the ' J ' at the end of the model number with 'FJ' when the optional standby output and/or remote ON/OFF control is required e.g., TLP150N-99S12FJ

1 Optional cover/enclosure (see datasheet for increased dimensions)
2 Floating output
 standards must be verified at the system level. This product is for sale to OEMs and system integrators, including through distribution channels. It is Not intended for sale to end users.

HEALTHCARE AC-DC POWER SUPPLIES

Healthcare AC-DC Power Supplies						
Output Power	Output				Size W x L x H (mm)	Model
[Forced Air] Free Air	V1	V2	V3	V4		
Up to 1800 W	Micro MP Series					
	1.8 to 60 V	1 to 12 outputs	(Fully Configurable)		$\begin{aligned} & 04 / 09: 1.57 \times 3.5 \times \\ & 10.0 \text { in, } 4 \text { Slots } \\ & 10 / 16: 1.57 \times 5.0 \times \\ & 10.0 \text { in, } 6 \text { Slots } \end{aligned}$	See $\mu \mathrm{MP}$ section
Up to 1500 W	Intelligent MP Series					
	2 to 60 V	1 to 21 outputs	Fully configurable and intelligent		$\begin{aligned} & \text { iMP4: } 2.5 \times 5 \times 10 \text { in } \\ & \text { (63.5 } \times 127 \times 254 \mathrm{~mm} \text {) } \\ & 5 \text { slots } \\ & \text { iMP8: } 2.5 \times 7 \times 10 \text { in } \\ & (63.5 \times 177.8 \times \\ & 254 \mathrm{~mm}) 6 \text { slots } \\ & \text { iMP1: } 2.5 \times 7 \times 11 \mathrm{in} \\ & (63.5 \times 203.2 \times \\ & 279.4 \mathrm{~mm}) 7 \text { slots } \end{aligned}$	See iMP section
[3000 W]	LCM3000 Bulk Front End					
\cdots +	12 to 48 V	Single outputs			$2.5 \times 7.0 \times 10.9$ in	See LCM3000 section
1500 to 4920 W	Intelligent VS Series					
	2 to 60 V	1 to 42 outputs	Fully configurable and intelligent		iVS1/6: $5 \times 5 \times 11$ in (127×127 x $179.4 \mathrm{~mm}) 9$ slots iVS3/8/8H: $5 \times 8 \times$ 11 in (127 x $203.2 \times$ 179.4 mm) 14 slots	See iVS section
Up to 24000 W	Precision High Power System					
	0.12 to 300 V	Up to 8 outputs	Fully configurable and intelligent		$\begin{aligned} & 5.22 \times 19 \times 27.9 \mathrm{in} \\ & (132.5 \times 482.6 \times \\ & 708.3) \end{aligned}$	See iHP Section

UltiMod Series
Unique in Flexibility, Unrivalled in Performance, Ultra-cost Competitive

SPECIAL FEATURES

- Highest efficiency - up to 91%
- User and field configurable
- Standard medical features
- Leakage current < $300 \mu \mathrm{~A}$ (< $150 \mu \mathrm{~A}$ optional)
- 2 MOPP
- 4 KV Isolation
- Lowest acoustic Noise

Total Power

- $-40^{\circ} \mathrm{C}$ start-up temperature
- Extra ruggedized optional
- Vibration: MIL-STD-810G
- No minimum load
- Extra-low profile $<1 \mathrm{U}$ height
- All outputs fully floating
- Series/parallel of multiple outputs
- 5 V isolated standby voltage
- Active PFC (Power Factor Correction)
- Product options: Conformal coating, low leakage current, connector, cabling and mounting options, and reverse fans additional ruggedization

TYPICAL APPLICATIONS
4, 6
Medical

- Clinical diagnostic and dialysis equipment, medical lasers, radiological imaging, clinical chemistry

Industrial

- Test and measurement, industrial machines, automation and audio equipment, printing, telecommunications

Ordering Information							
Model	Vnom (V)	Set Point Adjust Range	Dynamic Vtrim Range (V)	$\operatorname{Imax}(\mathrm{A})$	Power (W)	Remote Sense	Power Good
XgA	12.0	10.8 to 15.6	-	12.5	150	-	-
XgB	24.0	19.2 to 26.4	-	8.3	200	-	-
XgC	36.0	28.8 to 39.6	-	5.6	200	-	-
XgD	48.0	38.5 to 50.4	-	4.2	200	-	-
XgE/Xg7	24.0	5.0 to 28.0	-	5.0	120	-	-
XgF/Xg8 (v1)	24.0	5.0 to 28.0	-	3.0	72	-	Yes
(v2)	24.0	5.0 to 28.0	-	3.0	72	-	Yes
XgG	2.5	1.5 to 3.6	1.15 to 3.6	40.0	100	Yes	Yes
XgH	5.0	3.2 to 6.0	1.5 to 6.0	36.0	180	Yes	Yes
XgJ	12.0	6.0 to 15.0	4.0 to 15.0	18.3	220	Yes	Yes
XgK	24.0	12.0 to 30.0	8.0 to 30.0	9.2	220	Yes	Yes
XgL	48.0	28.0 to 58.0	8.0 to 58.0	5.0	240	Yes	Yes
Xg1	2.5	1.5 to 3.6	1.15 to 3.6	50.0	125	Yes	Yes
Xg2	5.0	3.2 to 6.0	1.5 to 6.0	40.0	200	Yes	Yes
Xg3	12.0	6.0 to 15.0	4.0 to 15.0	20.0	240	Yes	Yes
Xg4	24.0	12.0 to 30.0	8.0 to 30.0	10.0	240	Yes	Yes
Xg5	48.0	28.0 to 58.0	8.0 to 58.0	6.0	288	Yes	Yes
XgM	5.0	3.2 to 6.0	1.0 to 6.0	40.0	200	Yes	Yes
XgN	12.0	6.0 to 15.0	1.0 to 15.0	20.0	240	Yes	Yes
XgP	24.0	12.0 to 30.0	1.0 to 30.0^{1}	10.0	240	Yes	Yes
XgQ	48.0	24.0 to 58.0	1.0 to 58.0^{2}	6.0	288	Yes	Yes
XgR	24.0	12.0 to 30.0	8.0 to 30.0	10.0	240	-	Yes
XgT	48.0	28.0 to 58.0	8.0 to 58.0	6.0	288	-	Yes

Environmental Specifications					
Parameter	Conditions/Description	Min	NOM	Max	Units
Operating Temperature	Operates to specification below - $20^{\circ} \mathrm{C}$ after 10 min warm-up	-40	-	70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40	-	85	${ }^{\circ} \mathrm{C}$
Derating	See derating curves	-	-	-	-
Relative Humidity	Non-condensing	5		95	\% RH
Acoustic Noise	Measured from distance of 1 m ; UX4/UX6. See page 58 of catalog	-	39.8/42.7	-	dBA
Shock		60	-	-	G
Vibration	MIL-STD 810G	-	-	-	-
Altitude	Operational: 2000 m , Storage: 8000 m	-	-	-	-

1 SEMI F47 compliant at input voltages > 160 VAC. Consult Advanced Energy for details.
2 Visit www.advancedenergy.com for configuration, ordering and contact information.

Intelligent MP Series

Intelligent Modular Power Supply for Optimum Flexibility Up to 1500 W

SPECIAL FEATURES

- Medical EN60601-1 approval
- Intelligent ${ }^{2} \mathrm{C}$ control
- Voltage adjustment on all outputs (Manual or $\mathrm{I}^{2} \mathrm{C}$)
- Configurable input and output (case and module) OK signals and indicators
- Configurable inhibit/enable
- Configurable output UP/DOWN sequencing
- Configurable current limit (foldback or constant current)
- High power density (8.8 W/in ${ }^{3}$)
- Intelligent fan (speed control/fault status)
- Downloadable GUI from website
- Customer provided air option
- $\mu \mathrm{P}$ controlled PFC input with active inrush protection
- $I^{2} \mathrm{C}$ monitor of voltage, current and temp
- Programmable voltage, current limit, inhibit/enable through $I^{2} \mathrm{C}$
- Optional extended hold-up module (SEMI F47 compliance)
- CAN BUS and RS-485 interface option
- Low leakage ($<300 \mu \mathrm{~A}$)
- Increased power density to 50\% over standard MP
- Backward compatibility with standard MP
- External switching frequency sync input
- Optional conformal coating
- Industrial temp range (-40 to $70^{\circ} \mathrm{C}$)
- No preload required
- Industrial shock/vibration (> 50 Gs)

Up to 21

Safety

- UL	UL60950/UL2601
- CSA	CSA22.2 No. 234 Level 5
- VDE	EN60950/EN60601-1
- BABT	Compliance to EN60950/
EN60601 BS7002	
- CB	Certificate and report
- CE	Mark to LVD

- UL UL60950/UL2601
- CSA CSA22.2 No. 234 Level 5
- VDE EN60950/EN60601-1
- BABT Compliance to EN60950/ EN60601 BS7002
- CB Certificate and report
- CE Mark to LVD

Electrical Specifications Input	
Input Range	85 to 264 VAC 120 to 350 VDC (limited to 300 VDC in medical applications)
Frequency	47 to 63 Hz (iMP1 47 to 440 Hz)
Inrush Current	40 A peak max (soft start)
Efficiency	Up to 85\% @ full case load
Power Factor	0.99 typ meets EN61000-3-2 (n / a @ 440 Hz)
Turn-on Time	AC on 2 sec typ, inhibit/enable 150 ms typical Programmable delay; 50 ms internal turn-on delay (Dual Output only)
EMI Filter	CISPR 22/EN55022 Level "B"
Leakage Current	$300 \mu \mathrm{~A}$ max @ 240 VAC; 47 to 63 Hz
Radiated EMI	CISPR 22/EN55022 Level "B"
Holdover Storage	20 ms min (independent of input VAC) additional 34 ms holdover storage with optional HUP module (SEMI F47 compatible)
AC OK	> 5 ms early warning min before outputs lose regulation Full cycle ride thru (50 Hz) (N/A on IMP4 > 750 W @ 90 VAC)
Harmonic Distortion	Meets EN61000-3-2

Electrical Specifications (Continued)	
Input	Meets EN60950 and EN60601 Input to output, input to ground: 2000 VAC; output to ground: 400 VDC Meets 1 MOPP Primary to ground, 2 MOPP Primary to Secondary
Isolation	TTL, Logic "1" and Logic "0"; configurable
Global Inhibit/Enable	iMP4: 16 A; iMP8: 20 A; iMP1: 25 A (both lines fused)
Input Fuse (internal)	Three years
Warranty	$\pm 10 \% ~ m i n i m u m ~ a l l ~ o u t p u t s ~(m a n u a l) ~$
Output	(full module adjustment range using ${ }^{2} \mathrm{C}$)

Environmental Specifications	
Operating Temperature	-40 to $70^{\circ} \mathrm{C}$ ambient. Derate each output 2.5% per degree from 50 to $70^{\circ} \mathrm{C}$. $\left(-20^{\circ} \mathrm{C}\right.$ start-up $)$
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Electromagnetic Susceptibility	Designed to meet EN61000-4; $-2,-3,-4,-5,-6,-8,-11$ Level 3
Humidity	Operating; Non-condensing 10% to 95% RH
Vibration	IEC68-2-6 to the levels of IEC721-3-2
MTBF Demonstrated	$>550,000$ hours at full load, 220 VAC and $25^{\circ} \mathrm{C}$ ambient conditions

The iMP software is designed to make the iMP Power Supply Unit (PSU) accessible to the user. It is intended to provide information gathered from the PSU and interactive controls to the basic capabilities of iMP power supply.

INTELLIGENT MEDIUM POWER

Output Module Line-up							
Module Code	1	2	3	5	4		Triple
Module Type	Single	Single	Single	Single	Dual		
Max Output Power	210 W	360 W	750 W	1500 W	144 W		36 W
Max Output Current	35 A	60 A	150 A	300 A	10 A		2 A
Output Voltages Available ${ }^{1}$	2 to 60 V	2 to 28 V		2 to 28 V			
Standard Voltage Increments	25	25	25	18	16		18
Remote Sense	Yes	Yes	Yes	Yes	Yes	Yes	No
Remote Margin ${ }^{1}$	Yes	Yes	Yes	Yes	No	No	No
V-Program - ${ }^{2} \mathrm{C}$ Control ${ }^{1}$	Yes	Yes	Yes	Yes	Yes	Yes	No
Active Current Share	Yes	Yes	Yes	Yes	Yes	No	No
Module Inhibit - ${ }^{2} \mathrm{C}$ Control ${ }^{1}$	Yes						
Module Inhibit - Analog	Yes	Yes	Yes	Yes	No	No	No
Over-voltage/Over-current Protection ${ }^{1}$	Yes						
Minimum Load Required	No						
Slots Occupied in any iMP Case	1	2	3	4	1		1

Output Module Voltage/Current

Voltage	Voltage Code	Single Output Module Code				Dual Output ${ }^{3}$		Triple Output			${ }^{12} \mathrm{C}$ Adjustment Ranges ${ }^{4}$
		1	2	3	5^{5}	V1	V2	-	-	-	
2 V	A	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	1.8 to 2.2
2.2 V	B	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	2.0 to 2.4
3 V	C	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	2.7 to 3.3
3.3 V	D	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	3.0 to 3.6
5 V	E	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	4.5 to 5.5
5.2 V	F	35 A	60 A	144 A	288 A	10 A	10 A	-	-	2 A	4.7 to 5.7
5.5 V	G	34 A	58 A	136 A	273 A	10 A	10 A	-	-	2 A	5.0 to 6.1
6 V	H	23 A	42 A	97.5 A	250 A	$10 \mathrm{~A}^{2}$	$10 \mathrm{~A}^{2}$	-	-	2 A	5.4 to 6.6
8 V	1	20 A	36 A	84.4 A	140 A	10 A	4 A	1 A	1 A	1 A	7.2 to 8.8
10 V	J	18 A	32 A	75 A	140 A	10 A	4 A	1 A	1 A	1 A	9.0 to 11.0
11 V	K	17 A	31 A	68 A	136.3 A	10 A	4 A	1 A	1 A	1 A	9.9 to 12.1
12 V	L	17 A	30 A	62.5 A	125 A	10 A	4 A	1 A	1 A	1 A	10.8 to 13.2
14 V	M	14 A	21 A	53.5 A	107 A	9 A	4 A	1 A	1 A	1 A	12.6 to 15.4
15 V	N	14 A	20 A	50 A	100 A	8 A	4 A	1 A	1 A	1 A	13.5 to 16.5
18 V	0	11 A	19 A	41.6 A	83.3 A	-	-	-	0.5 A	0.5 A	16.2 to 19.8
20 V	P	10.5 A	18 A	37.5 A	75 A	-	-	-	0.5 A	0.5 A	18.0 to 22.0
24 V	Q	8.5 A	15 A	30 A	62.5 A	4 A	2 A	-	0.5 A	0.5 A	21.6 to 26.4
28 V	R	6.7 A	11 A	26.8 A	53.5 A	3 A	2 A	-	0.5 A	0.5 A	25.2 to 30.8
30 V	S	6.5 A	11 A	25 A	50 A	-	-	-	-	-	27.0 to 33.0
33 V	T	6.2 A	10.9 A	22.7 A	35.8 A	-	-	-	-	-	29.7 to 36.3
36 V	U	5.8 A	10 A	20.8 A	35.8 A	-	-	-	-	-	32.4 to 39.6
42 V	V	4.2 A	7.5 A	16 A	35.7 A	-	-	-	-	-	37.8 to 46.2
48 V	W	4 A	7.5 A	15.6 A	31.2 A	-	-	-	-	-	43.2 to 52.8
54 V	X	3.7 A	6 A	13.9 A	27.7 A	-	-	-	-	-	48.6 to 59.4
60 V	Y	3.5 A	6 A	12.5 A	25 A	-	-	-	-	-	54.0 to 66.0
Consult Factory											
Special	Z	35 A	60 A	150 A	-	-	10 A	-	-	-	2.3 to 2.6
Special	Z	35 A	60 A	150 A	-	-	10 A	-	-	-	3.7 to 4.4
Special	Z	20 A	36 A	80 A	140 A	-	8 A	-	-	-	6.7 to 7.1

Parallel Codes

		¢	$\stackrel{ \pm}{\text { ¢ }}$	答	$\stackrel{\sim}{\text { N }}$	$\begin{aligned} & \stackrel{H}{0} \\ & \stackrel{0}{\omega} \end{aligned}$	iMP4 available slots
		$\stackrel{\sim}{\square}$	+	ले	$\stackrel{\text { N }}{\text { ¢ }}$	$\begin{aligned} & \stackrel{-1}{4} \\ & \stackrel{0}{\omega} \end{aligned}$	iMP8 available slots
$\begin{gathered} N \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{0}{\omega} \end{gathered}$	$\begin{gathered} \bullet \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{0}{\omega} \end{gathered}$	$$	$\begin{gathered} \pm \\ \stackrel{0}{\omega} \end{gathered}$	$\begin{aligned} & m \\ & \stackrel{0}{\omega} \end{aligned}$	$\begin{gathered} N \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{0}{\omega} \end{gathered}$	$\begin{aligned} & \stackrel{-}{0} \\ & \stackrel{0}{\omega} \end{aligned}$	iMP1 available slots
	6	5	4	3	2		0 = No parallel
	-	-	-	-	-	\bullet	
	-	-	-	-	-		1 = 1 \& 2
	-	-	-	-	\rightarrow	-	$2=2$ \& 3
	-	-	\bullet	\rightarrow	-	\bullet	$3=3 \& 4$
	-	-	\bullet	-	-	-	$4=4$ \& 5
	-	-	\rightarrow	\rightarrow	-	\bullet	$5=3 \& 4 \& 5$
-	-	\rightarrow	-	-	-	-	$6=5 \& 6$
-	-	\bullet	\rightarrow	-	-	-	$7=4$ \& 5 \& 6
	\rightarrow	-	-	-	-	-	$8=6$ \& 7
	\rightarrow	-	\bullet	\bullet	-	\bullet	$9=3 \& 4,6 \& 7$
-	\bullet	\rightarrow	$\bullet-$	\bullet	-		$A=1 \& 2,3 \& 4,5 \& 6$
-	-	-	-	-	\bullet	\bullet	$\mathbf{C}=2 \& 3,4 \& 5$
-	\bullet	\rightarrow	\bullet	\bullet	-	-	$E=4$ \& 5,5 \& 6

Increments of current Not shown can be achieved by paralleling modules (add currents of each module selected).

1 Programmable
2 Contact factory for extended range down to 6 V
3 Total output power on dual module must Not exceed 144 W
4 For single output modules only
5 Applicable for iMP1 only

ORDERING INFORMATION

Sample below is 1500 W case with $12 \mathrm{~V} @ 62.5 \mathrm{~A} ; 5 \mathrm{~V} @ 60 \mathrm{~A} ; 24 \mathrm{~V} @ 8.5 \mathrm{~A} ; 12 \mathrm{~V} @ 10 \mathrm{~A} ; 12 \mathrm{~V} @ 4 \mathrm{~A}$; with No options.

Case Size		Module/Voltage/Option Codes First - Module Code Second - Voltage Code Third - Option Code		Case Option Codes		Software Code	Hardware Code
IMP1 ${ }^{1}$	-	$3 L 0-2 E 2$ - 1Q1-4LL0		00		A	\#\#\#
$\begin{aligned} & \text { Case Size (mm) } \\ & 4=2.5^{\prime \prime} \times 5^{\prime \prime} \times 10^{\prime \prime} ; 750 \text { to } 1100 \mathrm{~W}, 5 \text { slots } \\ & (63.5 \times 127 \times 254) \\ & 8=2.5^{\prime \prime} \times 7^{\prime \prime} \times 10^{\prime \prime} ; 1000 \text { to } 1200 \mathrm{~W}, 6 \\ & \text { slots } \\ & \quad(63.5 \times 177.8 \times 254) \\ & 1=2.5^{\prime \prime} \times 8^{\prime \prime} \times 11^{\prime \prime} ; 1200 \text { to } 1500 \mathrm{~W}, 7 \\ & \text { slots } \\ & \quad(63.5 \times 203.2 \times 279.4) \\ & \text { 1: Add "E"" after iMP4 to denote IEC } \\ & \text { input option. e.g., iMP4E } \\ & \text { (Not available on iMP8 or iMP1) } \end{aligned}$		Module Codes Module/voltage/option codes Module codes: (None) $=36 \mathrm{~W}$ triple O / P (1 slot) $1=210 \mathrm{~W}$ single O/P (1 slot) $2=360 \mathrm{~W}$ single O / P (2 slot) $3=750 \mathrm{~W}$ single O / P (3 slot) 4 = 144 W dual O/P (1 slot) $5=1500 \mathrm{~W}$ single O / P (4 slot) 6-9 = Future Voltage Codes See Output Module Voltage/ Current table above Option Codes 0 = Standard 1 = Module enable 2 = Constant current $3=1$ \& 2 combined 4 = Set for use in standard (Non-intelligent case) 5 = Shutdown mode for 1500 W $6=1$ \& 5 combined 7-9 = Future		Case Option Codes First digit 0-9 = parallel code (See Parallel Codes table above) Second digit $0=$ No options 1 = Reverse air 3 = Global enable 4 = Fan idle w/inhibit 5 = Opt $1+$ Opt 3 $6=$ Opt $1+$ Opt 4 7 = Opt $3+$ Opt 4 $8=$ Opt $1+3+4$ $9=$ RS-485 73-544-002 C $=9+3$ D = CANBUS 73-544-003 $\mathrm{E}=\mathrm{D}+3$		Software code used for configuration change. " A " is standard Ordering Note: 1. USB to ${ }^{2} \mathrm{C}$ m code 73-769	Factory assembled for hardware of firmware mods. dule order 01 or -002

Total Power

Up to 1800 W
Input Voltage

- 85 to 264 VAC
- 120 to 300 VDC

\# of Outputs

Up to 12

Safety

- UL UL60950/UL60601-1
- CSA CSA22.2 No. 234 Level 5
- VDE EN60950/EN60601-1
- BABT Compliance to EN60950/ EN60601 BS7002
- CB Certificate and report
- CE Mark to LVD
- CCC Approved

MicroMP Series

Cost-efficient, Configurable Power Supply with Market-leading Density and Efficiency Up to 1800 W with New Product Enhancements

SPECIAL FEATURES

- Optional conformal coating
- Industrial temp range (-40 to $70^{\circ} \mathrm{C}$)
- Industrial shock/vibration (> 50 G's)
- Low cost
- Standard medical leakage ($<400 \mu \mathrm{~A}$) with optional low leakage ($<100 \mu \mathrm{~A}$)
- New 1000 W modules
- PMBus ${ }^{\text {TM }}$
- High efficiency
- Low profile 1 U size
- Multi output
- Current limit - constant current foldback (optional)
- Low acoustic noise
- High power density
- uMP04: 10.8 W/in ${ }^{3}$
- uMP09: 18.0 W/in ${ }^{3}$
- uMP10: 15.1 W/in ${ }^{3}$
- uMP16: 22.9 W/in ${ }^{3}$
- Intelligent fan (speed control/fault status)
- Downloadable GUI from website
- $\mu \mathrm{P}$ controlled PFC input with active inrush protection
- No preload required
- IEC, terminal block, or barrier strip input option

Electrical Specifications Input	
Input Range	85 to 264 VAC 120 to 350 VDC (limited to 300 VDC in medical apps)
Frequency	47 to 440 Hz
Inrush Current	40 A peak max (soft start)
Efficiency	Up to 91\% @ full case load
Power Factor	0.99 typ meets EN61000-3-2 (n/a @ 440 Hz)
Turn-on Time	AC on 2 sec for $\mu \mathrm{MP10/16}$ and 1.5 sec for μ MP04, inhibit/enable 250 ms typical
EMI Filter	CISPR 22/EN55022 Level "B"
Leakage Current	< $200 \mu \mathrm{~A}$ using center-tapped xfmr measurement method. (< $400 \mu \mathrm{~A}$ @ 264 VAC input)
Radiated EMI	CISPR 22/EN55022 Level "B"
Warranty	Two years
Output	
Factory Set Point Accuracy	$\pm 1 \%$
Margining or Optional V Program	$\pm 3-7 \%$ Nominal analog (single output module only)
Overall Regulation	0.4% or 30 mV which ever is greater
Ripple	RMS: 0.1% or 10 mV , whichever is greater Pk-Pk: 1.0% or 50 mV , whichever is greater Bandwidth limited to 20 MHz
Dynamic Response	< $\pm 5 \%$ or 250 mV , with 50% step load
Recovery Time	To within 1% in < $300 \mu \mathrm{~s}$
Reverse Voltage Protection	100\% of rated output current
Thermal Protection (OTP)	All outputs disabled when internal temp exceeds safe operating range.
Remote Sense	Up to 0.5 V total drop (Not available on triple output module)
Single Wire Parallel	Current share to within 5\% of total rated current
DC OK	$\pm 5 \%$ of Nominal
Minimum Load	Not required; signal is open collector
Housekeeping Standby	5 VDC @ 2.0 A max present whenever AC input is applied
Module Inhibit	Logic - output on with low or open. Different logic options available
Output/Output Isolation	> 1 Megohm, 500 V

Environmental Specifications

Operating Temperature	-40 to $70^{\circ} \mathrm{C}$ ambient. Derate each output 2.5% per degree from 50 to $70^{\circ} \mathrm{C} .\left(-20^{\circ} \mathrm{C}\right.$ start-up) Meets full spec after $1 / 2$ load. 10 min warm-up
Storage Temp	-40 to $85^{\circ} \mathrm{C}$
Electromagnetic Susceptibility	Designed to meet EN61000-4; $-3,-6,-11$ Level 3, Level 4 for $-2,-4,-5$
Humidity	Operating; Non-condensing 10 to 95% RH
Vibration	MIL-STD-810E
MTBF Demonstrated	$>350,000$ hours at full load, one $\mu M P 04$ case + two modules, Telcordia SR-332 calculated MTBF
Altitude:	Up to $10 \mathrm{k} \mathrm{ft;} \mathrm{derate} \mathrm{linear} \mathrm{to} 50 \%$ from 10 to 30 k ft

ORDERING INFORMATION

CoolX ${ }^{\circledR} 1800$
High Efficiency, Intelligent and Reliable 1800 W Modular Power Supplies

SPECIAL FEATURES
Modular Power Supply

- Up to 1800 W
- Up to 12 outputs
- All outputs isolated (1850 VAC)
- Variable fan speed control

Reliability

- MTBF > 200,000 hours
- Level 4 input surge protection

Total Power

- CX18S 1800 W
- CX18M 1800 W

Slots
6, 6
Cooling
Variable fan speed control
Parameters
$262 \mathrm{~mm} \times 127 \mathrm{~mm} \times 41 \mathrm{~mm}$
(10.5 in $\times 5$ in $\times 1 \mathrm{U}$)

Certification and Compliance
Medical (CX18M)

- IEC60601-1 3rd edition, IEC60601-1-2 4th edition (EMC)
- 2 MOPP
- Dual fused

Industrial (CX18S)

- IEC60950, IEC62368-1
- SEMI F47 ${ }^{1}$

Defense/Aero (All Models)

- MIL-STD-810G

1 SEMI F47 compliant at input voltages >180 VAC. Consult Advanced Energy for details.

Flexibility

- Analog and digital management - PMBus ${ }^{\text {TM }}$ monitoring and control capability
- Field-configurable - plug and play power
- Series and parallel outputs for higher voltages and currents
- Mounting options - base/side and DIN-Rail mounting

TYPICAL APPLICATIONS

Medical

- Clinical diagnostic equipment, medical lasers, dialysis equipment, radiological imaging, clinical chemistry

Industrial

- Test and measurement, industrial machines, automation equipment, printing, telecommunications, MIL-COTS

Audio Equipment

- Hi Rel, harsh industrial electronics, radar (marine- and groundbased), communications, test and measurement

Cool X CoolMods Table				
Parameter	Vnom (V)	Set Point Adjust Range (V)	$\operatorname{Imax}(\mathrm{A})$	Power (W)
Single Output Modules (1 Slot)				
CmA	5	2.5 to 6.0	30.0	150
CmB^{1}	12	6.0 to 15.0^{2}	23.3	280
CmC	24	15.0 to 28.0	12.5	300
CmD	48	28.0 to 58.0^{3}	6.25	300
High Power Modules (3 Slot)				
CmE^{4}	24	24 to 25.2	37.5	900
CmF ${ }^{4}$	48	48 to 50.4	18.75	900
Dual Output Modules (1 Slot)				
CmG ${ }^{5}$	24	3.0 to 30.0	4.0	120
	24	3.0 to 30.0	4.0	120
$\mathrm{CmH}^{6} \quad \mathrm{~V}$	5	3.0 to 6.0	10.0	60
	24	3.0 to 30.0	4.0	120
Wide Trim Modules (1 Slot)				
CmA-W01	5	1.0 to 6.0	30.0	150
CmB-W01	12	1.0 to 15.0^{2}	23.3	280
CmC-W01	24	2.0 to 28.0	12.5	300
CmD-W01	48	3.0 to 58.0^{3}	6.25	300
High Voltage Modules (1 Slot)				
CmK ${ }^{7}$	200	175 to 205	1.0	200

Environmental Specifications					
Parameter	Conditions/Description	Min	NOM	Max	Units
Operating Temperature	Operates to specification below $-20^{\circ} \mathrm{C}$ after 10 min warm-up	-40	-	70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40	-	85	${ }^{\circ} \mathrm{C}$
Derating	See derating curves	-	-	-	-
Relative Humidity	Non-condensing	5	-	95	\% RH
Shock and Vibration	MIL-STD-810G Method 514.6	-	-	-	-
Altitude		-	-	5000	m

1 Full dynamic specifications may Not be met at full load when output voltage is trimmed above 13 V
2 Max Trim 14 V when used with High Power Module
3 Max Trim 56 V when used with High Power Module
4 a) Only one High Power module (CmE or CmF) can be used per CoolPac
 for details or support..
5 For the CmG module the max combined power of both outputs is 200 W
6 For the CmH module the max combined power of both outputs is 180 W
7 When a CmK module is used in the same pack as a CmE or CmF module, one module slot must remain unpopulated.

CoolX ${ }^{\circledR} 3000$

High Efficiency, Intelligent and Reliable 3000 W Modular Power Supply

Total Power

- CX30S 3000 W
- CX30M 3000 W

Slots

12, 12

Cooling

Variable fan speed control

Parameters

$325 \times 131 \times 120 \mathrm{~mm}$

$(12.8 \times 5.2 \times 4.7 \mathrm{in})$

Safety

Medical (CX30M)

- IEC60601-1 3rd edition, IEC60601-1-2 4th edition (EMC)
- 2 MOPP
- Dual fused

Industrial (CX30S)

- IEC62368-1
- SEMI F47

SPECIAL FEATURES

Modular Power Supply

- Up to 3000 W
- Up to 24 outputs
- All outputs isolated (1850 VAC)
- Variable fan speed control

Reliability

- MTBF > 150,000 hours
- Level 4 input surge protection
- 23.5 W always ON auxiliary power output
- Safety approved to 5000 m altitude
- 91% efficiency
- Five-year warranty

TYPICAL APPLICATIONS

Medical

- Clinical diagnostic equipment, medical lasers, dialysis equipment, radiological imaging, chemical chemistry

Industrial

- Test and measurement, industrial machines, automation equipment, printing, telecommunications

Flexibility

- Analog and digital management - PMBus ${ }^{\text {TM }}$ monitoring and control capability
- Field-configurable - plug and play power
- Series and parallel outputs for higher voltages and currents
- Mounting options - base/side

Hi Rel

- Harsh industrial electronics, radar (marine- and groundbased), communications, test and measurement

CoolX CoolMods Table				
Parameter	Vnom (V)	Set Point Adjust Range (V)	$\operatorname{Imax}(\mathrm{A})$	Power (W)
Single Output Modules (1 Slot)				
CmA	5	2.5 to 6.0	30.0	150
CmB^{1}	12	6.0 to 15.0^{2}	23.3	280
CmC	24	15.0 to 28.0	12.5	300
CmD	48	28.0 to 58.0^{3}	6.25	300
High Power Modules (3 Slot)				
CmE ${ }^{4}$	24	24 to 25.2	37.5	900
CmF^{4}	48	48 to 50.4	18.75	900
Dual Output Modules (1 Slot)				
CmG ${ }^{5}$	24	3.0 to 30.0	4.0	120
	24	3.0 to 30.0	4.0	120
$\mathrm{CmH}^{6} \mathrm{~V}$	5	3.0 to 6.0	10.0	60
	24	3.0 to 30.0	4.0	120
Wide Trim Modules (1 Slot)				
CmA-W01	5	1.0 to 6.0	30	150
CmB-W01	12	1.0 to 15.0^{2}	23.3	280
CmC-W01	24	2.0 to 28.0	12.5	300
CmD-W01	48	3.0 to $58.0{ }^{3}$	6.25	300
High Voltage Modules (1 Slot)				
CmK ${ }^{7}$	200	175 to 205	1.0	200

Environmental Specifications					
Parameter	Conditions/Description	Min	NOM	Max	Units
Operating Temperature		-25	-	60	${ }^{\circ} \mathrm{C}$
Storage Temperature		-25	-	85	${ }^{\circ} \mathrm{C}$
Derating	CX30: Derate from $50^{\circ} \mathrm{C}$	-	50	60	${ }^{\circ} \mathrm{C}$
Relative Humidity	Non-condensing	5	-	95	\% RH
Shock		-	-	40	G
Altitude		-	-	5000	m

1 Full dynamic specifications may Not be met at full load when output voltage is trimmed above 13 V
2 Max Trim 14 V when used with High Power Module
3 Max Trim 56 V when used with High Power Module
4 a) Only one High Power module (CmE or CmF) can be used per CoolPac
 for details or support..
5 For the CmG module the max combined power of both outputs is 200 W
6 For the CmH module the max combined power of both outputs is 180 W
7 When a CmK module is used in Unit A along with a CmE or CmF module, one module slot of Unit A must remain unpopulated. When a CmK module is used in Unit B along with a CmE or CmF module, one module slot of Unit B must remain unpopulated.

Total Power

Up to 4920 W

Input Voltage

- 85 to 264 VAC
- 120 to 300 VDC

\# of Outputs

Up to 24

Safety

- UL UL60950/UL2601
- CSA CSA22.2 No. 234 Level 5
- VDE EN60950/EN60601-1
- BABT Compliance to EN60950/ EN60601 BS7002
- CB Certificate and report
- CE Mark to LVD

Intelligent VS Series

Intelligent Modular Power Supply for Optimum Flexibility Up to 4920 W

SPECIAL FEATURES

Medical EN60601-1 approval

- Intelligent ${ }^{2} \mathrm{C}$ control
- Voltage adjustment on all outputs (manual or $\mathrm{I}^{2} \mathrm{C}$)
- Configurable input and output OK signals and indicators
- Configurable inhibit/enable
- Configurable output UP/DOWN sequencing
- High power density (12 W/in ${ }^{3}$)
- Intelligent fan (speed control/fault status)
- $\mu \mathrm{P}$ controlled PFC input with active Inrush protection
- ${ }^{2} \mathrm{C}$ monitor of voltage, current and temp
- Programmable voltage, current limit, inhibit/enable through $1^{2} \mathrm{C}$
- CAN BUS and RS-485 interface option
- Optional extended hold-up module (SEMI F47 compliance)
- Increased power density to 150%
- Optional conformal coating
- Industrial temp range (-40 to $70^{\circ} \mathrm{C}$)
- Uses standard iMP modules
- Field upgradeable firmware
- RoHS compliant

Single

Dual

144 W
Triple

1500 W (10 to 60 V)

36 W

1500 W with Bus Bar Adaptor Option (used with the 10 to 60 V module)

Electrical Specifications Input	
Input Range	
iVS1 \& iVS3:	90 to 264 VAC 1Ф: 120 to 300 VDC
iVS6 \& iVS8:	170 to 264 VAC $3 \varnothing$
iVS8H	380/480 VAC $3 \varnothing$
Frequency	47 to 63 Hz
Inrush Current	40 A peak maximum (soft start)
Efficiency	Up to 85\% @ full case load
Power Factor	0.99 typ meets EN61000-3-2
Turn-on Time	AC on 1.5 sec typical, inhibit/enable 150 ms typical. Programmable
EMI Filter	CISPR 22/EN55022 Level "B"
Leakage Current	$300 \mu \mathrm{~A}$ max @ 240 VAC; 47 to 63 Hz
Radiated EMI	CISPR 22/EN55022 Level "B"
Holdover Storage	10 ms minimum (independent of input VAC) additional 20 ms holdover storage with optional HUP module (SEMI F47 compatible)
AC OK	> 5 ms early warning minutes before outputs lose regulation. Full cycle ride thru (50 Hz). Programmable
Harmonic Distortion	Meets EN61000-3-2
Isolation	Meets EN60950 and EN60601 Meets 1 MOPP Primary to ground, 2 MOPP Primary to Secondary ${ }^{1}$
Global Inhibit/Enable	TTL, Logic "1" and Logic "0"/configurable
Warranty	Three years
Output	
Adjustment Range ${ }^{2}$	$\pm 10 \%$ minimum all outputs (manual) (full module adjustment range using ${ }^{2} \mathrm{C}$)
Margining	± 4 to 6% Nominal analog (single output module only)
Overall Regulation	0.4% or 20 mV max (1500 W modules 1\% max)
Ripple	RMS: 0.1% or 10 mV , whichever is greater Pk-Pk: 1.0% or 50 mV , whichever is greater Bandwidth limited to 20 MHz
Dynamic Response	<2\% or 100 mV , with 25% load step
Recovery Time	To within 1% in < 300μ s
Over-current Protection ${ }^{3}$	Configurable through I^{2} C. single output module and main output of the dual output module 105 to 120% of rated output current. Aux output of dual output module 105 to 140% of rated output current. Special programmable OCP delay on 1500 W module from 100 ms to 25.5 seconds with shutdown features
Short-circuit Protection	Protected for continuous short-circuit. Recovery is automatic upon removal of short (Shutdown mode on 1500 W module)
Over-voltage Protection ${ }^{2}$	Configurable through ${ }^{2} \mathrm{C}$
- Single Output Module	2 to 5.5 V 122 to 134%; 6 to 60 V 110 to 120%
- Dual Output Module	2 to 6 V 122 to 134%; 8 to 28 V 110 to 120%
- Triple Output Module	No over-voltage protection provided
Thermal Protection ${ }^{2}$	Configurable through $1^{2} \mathrm{C}$ All outputs disabled when internal temp exceeds safe operating range. > 5 ms warning (AC OK signal) before shutdown
Remote Sense	Up to 0.5 V total drop (Not available on triple output module)
Single Wire Parallel	Current share to within 2% of total rated current
DC OK ${ }^{2}$	$\pm 5 \%$ of Nominal. Configurable through $I^{2} \mathrm{C}$
Minimum Load	Not required
Housekeeping Bias Voltage	5 VDC @ 1.0 A max present whenever AC input is applied
Module Inhibit ${ }^{2}$	Configured and controlled through $1^{2} \mathrm{C}$
Output/Output Isolation	> 1 Megohm, 500 V

1 iVS8H does Not have Medical or MOPP approvals
2 Can be controlled via $1^{2} \mathrm{C}$
3 Controlled via $I^{2} \mathrm{C}$ but requires load calibration

INTELLIGENT MEDIUM-HIGH POWER

Environmental Specifications	-40 to $70^{\circ} \mathrm{C}$ ambient. Derate each output 2.5% per degree from 50 to $70^{\circ} \mathrm{C} .\left(-20^{\circ} \mathrm{C}\right.$ start-up)
Operating Temperature	-40 to $85^{\circ} \mathrm{C}$
Storage Temperature	Designed to meet EN61000-4; -2, $-3,-4,-5,-6,-8,-11$ Level 3
Electromagnetic Susceptibility	Operating; Non-condensing 10 to $95 \% \mathrm{RH}$
Humidity	IEC68-2-6 to the levels of IEC721-3-2
Vibration	$>550,000$ hours at full load, 220 VAC and $25^{\circ} \mathrm{C}$ ambient conditions
MTBF Demonstrated	

Output Module Line-up							
Module Code	1	2	3	5	4		
Module Type	Single	Single	Single	Single	Dual		Triple
Max Output Power	210 W	360 W	750 W	1500 W	144 W		36 W
Max Output Current	35 A	60 A	150 A	300 A	10 A		2 A
Output Voltages Available ${ }^{1}$	2 to 60 V	6 to 15,24 to 28; 6 to 15; 6 to 15; 6 to 15; 2 to 6; 2 to 6, 2 to 6; 24 to 28, 24 to $28 ; 24$ to $28 ; 2$ to 6		8 to 15,8 to 15 , 2 to 6; 8 to 15,8 to 15,8 to $15 ;$ 8 to 15,8 to 5,18 to $28 ;$ 8 to 15,18 to 28,2 to 6			
Standard Voltage Increments	25	25	25	18	16		18
Remote Sense	Yes	Yes	Yes	Yes	Yes	Yes	No
Remote Margin ${ }^{1}$	Yes	Yes	Yes	Yes	No	No	No
V-Program- ${ }^{2} \mathrm{C}$ C Control ${ }^{1}$	Yes	Yes	Yes	Yes	Yes	Yes	No
Active Current Share	Yes	Yes	Yes	Yes	Yes	No	No
Module Inhibit - $1^{2} \mathrm{C}$ Control ${ }^{1}$	Yes						
Module Inhibit - Analog	Yes	Yes	Yes	Yes	No	No	No
Over-voltage/Over-current Protection ${ }^{1}$	Yes						
Minimum Load Required	No						
Slots Occupied in any iMP Case	1	2	3	4	1		1

1 Programmables

Output Module Voltage/Current											
Voltage	Voltage Code	Single Output Module Code				Dual Output ${ }^{2}$		Triple Output			${ }^{2}{ }^{2} \mathrm{C}$ Adjustment Ranges ${ }^{3}$
		1	2	3	5	V1	V2				
2 V	A	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	1.8 to 2.2
2.2 V	B	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	2.0 to 2.4
3 V	C	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	2.7 to 3.3
3.3 V	D	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	3.0 to 3.6
5 V	E	35 A	60 A	150 A	300 A	10 A	10 A	-	-	2 A	4.5 to 5.5
5.2 V	F	35 A	60 A	144 A	288 A	10 A	10 A	-	-	2 A	4.7 to 5.7
5.5 V	G	34 A	58 A	136 A	273 A	10 A	10 A	-	-	2 A	5.0 to 6.1
6 V	H	23 A	42 A	97.5 A	250 A	$10 \mathrm{~A}^{1}$	$10 \mathrm{~A}^{1}$	-	-	2 A	5.4 to 6.6
8 V	I	20 A	36 A	84.4 A	140 A	10 A	4 A	1 A	1 A	1 A	7.2 to 8.8
10 V	J	18 A	32 A	75 A	140 A	10 A	4 A	1 A	1 A	1 A	9.0 to 11.0
11 V	K	17 A	31 A	68 A	136.3 A	10 A	4 A	1 A	1 A	1 A	9.9 to 12.1
12 V	L	17 A	30 A	62.5 A	125 A	10 A	4 A	1 A	1 A	1 A	10.8 to 13.2
14 V	M	14 A	21 A	53.5 A	107 A	9 A	4 A	1 A	1 A	1 A	12.6 to 15.4
15 V	N	14 A	20 A	50 A	100 A	8 A	4 A	1 A	1 A	1 A	13.5 to 16.5
18 V	O	11 A	19 A	41.6 A	83.3 A	-	-	-	0.5 A	0.5 A	16.2 to 19.8
20 V	P	10.5 A	18 A	37.5 A	75 A	-	-	-	0.5 A	0.5 A	18.0 to 22.0
24 V	Q	8.5 A	15 A	30 A	62.5 A	4 A	2 A	-	0.5 A	0.5 A	21.6 to 26.4
28 V	R	6.7 A	11 A	26.8 A	53.5 A	3 A	2 A		0.5 A	0.5 A	25.2 to 30.8
30 V	S	6.5 A	11 A	25 A	50 A	-	-	-	-	-	27.0 to 33.0
33 V	T	6.2 A	10.9 A	22.7 A	35.8 A	-	-	-	-	-	29.7 to 36.3
36 V	U	5.8 A	10 A	20.8 A	35.8 A	-	-	-	-	-	32.4 to 39.6
42 V	V	4.2 A	7.5 A	16 A	35.7 A	-	-	-	-	-	37.8 to 46.2
48 V	W	4 A	7.5 A	15.6 A	31.2 A	-	-	-	-	-	43.2 to 52.8
54 V	X	3.7 A	6 A	13.9 A	27.7 A	-	-	-	-	-	48.6 to 59.4
60 V	Y	3.5 A	6 A	12.5 A	25 A	-	-	-	-	-	54.0 to 66.0
Consult Factory											
Special	Z	35 A	60 A	150 A	-	-	10 A	-	-	-	2.3 to 2.6
Special	Z	35 A	60 A	150 A	-	-	10 A	-	-	-	3.7 to 4.4
Special	Z	20 A	36 A	80 A	140 A	-	8 A	-	-	-	6.7 to 7.1

1 Consult factory for extended range down to 6 V .
2 Total output power on dual model must not exceed 144 W .
3 For single output modules only.

ORDERING INFORMATION

Sample below is 3210 W case with 12 V @ $125 \mathrm{~A} ; 24 \mathrm{~V} @ 8.5 \mathrm{~A} ; 5 \mathrm{~V} @ 60 \mathrm{~A} ; 12 \mathrm{~V} @ 10 \mathrm{~A}$ and 12 V @ 4 A ; with no options.

	Case Size
	iVS1
Case Size (mm)	
$(127 \times 127 \times 279.4)$	
$\begin{aligned} & 3= \quad 5 " \times 8 \text { " } \times 11^{\prime \prime} ; 1800 \text { to } 4920 \mathrm{~W}, 14 \text { slots } \\ &(127 \times 203.2 \times 279.4) \end{aligned}$	
3-Phase Input	
$\begin{aligned} 6=\begin{array}{l} 5 " \times 5 " \times 11 " ; 3120 \mathrm{~W}, 9 \text { slots } \\ (127 \times 127 \times 279.4) \end{array} \end{aligned}$	
$\begin{aligned} 8= & 5^{\prime \prime} \times 8 \times 11^{\prime \prime} ; 4920 \mathrm{~W}, 14 \text { slots } \\ & (127 \times 203.2 \times 279.4) \end{aligned}$	
$\begin{aligned} & 8 \mathrm{H}^{1}=5 " \times 8 " \times 11^{\prime \prime} ; 4920 \mathrm{~W}, 14 \text { slots } \\ &(127 \times 203.2 \times 279.4) \end{aligned}$	
1: The input is 380 to 440 VAC 3 phase Nominal, 3-phase versions Not medically approved.	

Module/Voltage/Option Codes First - Module Code Second - Voltage Code Third - Option Code

5L1-1Q1-2EO-4LLO

Module Codes

Module/voltage/option codes
Module Codes:
(None) $=36 \mathrm{~W}$ triple O / P (1 slot)
$1=210 \mathrm{~W}$ single O/P (1 slot)
$2=360 \mathrm{~W}$ single O / P (2 slot)
$3=750 \mathrm{~W}$ single O / P (3 slot)
$5=1500 \mathrm{~W}$ single O/P (slot 4)
4 = 144 W dual O/P (1 slot)
HUP = Extra 30 mS hold-up (1 slot)

Voltage Codes:

See Output Module Voltage/
Current table above
Option Codes:
$0=$ Standard
1 = Module enable
2 = Constant current
$3=1 \& 2$ combined
4 = Set for use in standard
(Non-intelligent case)
5 = Shutdown mode for 1500 W
$6=1 \& 5$ combined
$7-9$ = Future

Ordering Note:

1. USB to ${ }^{2} \mathrm{C}$ module order code 73-769-001

Total Power

Up to 24 KW

Input Voltage

- 180 to 264 VAC
- 342 to 528 VAC
- 600 VAC for Canadian Version
- 3-Phase
- 1-Phase available on 12KW Modules

\# of Outputs

Up to 8

Safety

- UL 60950-1 $2^{\text {nd }}$ Edition; EN60950-1; IEC60950-1/EN60950
- CSA C22.2 No. 60950-1-07, $2^{\text {nd }}$ Edition
- EN60601-1; IEC60601-1; IEC60601
- UL 60601-1 1st Edition; ANSI/AAMI ES60601-1 (2005 + C1:09 + A2:10) " $3^{\text {rd }}$ Ed"
- CAN/CSA-C22.2 No. 60601-1 (2008)
- UL/CSA 61010 and IEC/EN 61010-1
- CB Certificate and Report
- CE (LVD+RoHS), EN60950-1

Precision High Power System

Up to 24000 W

SPECIAL FEATURES

- Multi output precision high power system
- Standard 19" rack
- Outputs parallel up to 1600 A
- Outputs series up to 1000 V
- 100% digital control
- Outputs program as voltage or current source
- Versatile input configurable to:
- Low Line 180 to 264 VAC Single/3-Phase
- High Line 342 to 528 VAC 3-Phase
- Medical safety approved - No ISOLATION XFMR NEEDED
- Flexible control interfaces: Analog 0 to 5 V or 0 to 10 V ; Digital Ethernet UDP, RS485, CAN, etc. or Ethernet TC/IP with PowerPro Connect Module option. Command protocol standard PMBus
- Air cooled
- Semi F47 compliance
- Field upgradeable firmware
- Programmable slew rate
- Fast current slew rate up to 200 Hz
- Active power factor correction
- User defined command profiles
- Direct drive current source for large scale LED grow luminaries

Electrical Specifications		
Input Parameter	19" Rack 24 KW strapped as 3-Phase 380/480 VAC Nominal (iHP24H3A/L)	19" Rack 24 KW strapped as 3-Phase 208/240 VAC Nominal (iHP24L3A/L)
Input Range	342 VAC to 528 VAC (Nominal rating 380/480 VAC)	187.5 VAC to 264 VAC (Nominal rating 208/240 VAC)
Number of Phases	3-phase (Wye or Delta) 4 wire total (3-phase and 1 protective earth ground)	
Frequency	47 to 440 Hz	
Phase Detection	Loss of phase will inhibit unit off Housekeeping/comms must continue with phase loss	
Max Current/Phase	51 A @ 380 VAC 40 A @ 480 VAC	84 A @ 208 VAC
Under-voltage Detection	Nominal input locked on at turn-on. Under-voltage shutdown @ 15\% below Nominal. Turn-on @ 12\% below Nominal. Not to interfere with SEMI F47 specs	
Current Inrush	$2.5 \times$ max input current	
Power Factor	> 0.9 @ full load and Nominal line	> 0.98 @ full load and Nominal line
Harmonic Distortion	THD < 13\%, PWHD < 22\% (refer to EN 61000-3-12)	
Line Interruption	Designed to meet SEMI F47-0706, 53, 58, S14 @ Nominal input voltages	
Input Leakage Current	$<2.5 \mathrm{~mA}$ Note for fixed condition 3rd edition leakage $=5 \mathrm{~mA}$	
POWER Switch	Front panel power switch required	
Input Protection	Internal fuse (Not user serviceable)	
Input Over-voltage Protection	Up to 115\% of Nominal input shall Not damage unit	
Phase Imbalance	$\leq 5 \%$	
Rack Parallel	Up to 6 racks (144 KW)	

Output - General Spe Parameter	ications							
Module Code	SL	SQ	ST	SW	S8	S1	SA	S2
\# Outputs	1	1	1	1	1	1	1	1
Nominal O/P (V)	12.0 V	24.0 V	32.0 V	48.0 V	80.0 V	125.0 V	200.0 V	250.0 V
Max Power (W)	2400 W	2880 W	2880 W	3000 W				
O/P Current Range (A)	0.0 A to 200 A	0.0 A to 120 A	0.0 A to 90 A	0.0 A to 62.5 A	0.0 A to 37.5 A	0.0 A to 24 A	0.0 A to 15 A	0.0 A to 12 A
Power Density (W/in ${ }^{\text {3 }}$)	32.5	39.0	39.0	40.6	40.6	40.6	39.0	40.6
Efficiency (\%)	93.5	93.5	93.5	93.5	93.5	93.5	93.5	93.5
Module Input Voltage	400 VDC							
Module Operating Temp	-0 to $+65^{\circ} \mathrm{C}$; Baseplate Temp TBD							
Series Operation	250 V modules can be connected in series up to 800 V for Medical and 1000 V above ground with No operation ON/OFF limitations							
Parallel Operation	Up to 8 modules can be paralleled in 1 rack, with up to 6 racks connected in parallel Single Wire Parallel connection will be provided as part of configuration							

PRECISION HIGH POWER

Output - Module In Constant Voltage Mode Constant Voltage								
Module Code	SL	SQ	ST	SW	S8	S1	SA	S2
Nominal Output (V)	12	24	32	48	80	125	200	250
Setting Range (V)	0.6 to 14.4 V	1.2 to 28.8 V	1.6 to 38.4 V	2.4 to 57.6 V	4.0 to 96.0 V	6.25 to 150.0 V	10.0 to 240.0 V	12.5 to 300.0 V
Low Frequency RMS Ripple (mV)	24	48	64	96	160	250	400	500
Line Regulation (mV)	12	24	32	48	80	125	200	250
Load Regulation (mV)	24	48	64	96	160	250	400	500
P-P Ripple (mV)	60	120	100	240	400	625	1250	1250
Drift (Temp Stability)	$\pm 0.05 \%$ of lout Rated over 8 hours, after 30 min warm-up, constant Line, Load and Temp							
Temp Coefficient (PPM/ ${ }^{\circ} \mathrm{C}$)	200							
Pgm Accuracy (mV)	Digital: 0.1% of Nominal Output Voltage; Analog: 1.0\% of Nominal Output Voltage							
Pgm Resolution (mV)	SL=TBD; SQ=1; SW=2; S8=8; S1=6; S2=21							
Meas Accuracy (mV)	$0.2 \%+0.2 \%$ of Nominal Output Voltage							
Meas Resolution	SL=TBD; SQ=1; SW=2; S8=8; S1=6; S2=21							
Transient Response	Max 5.0% deviation from current set point must recover within 1 mS for a 50% step load							
Current Sense Method	Internal Shunt; External Shunt can be used for higher resolution and accuracy							

Output - Module In Constant Current Mode									
Constant Voltage - Programmable load compensation available for resistive and inductive loads; capacitive load applications; and LED drive applications									
Module Code	SL		SQ	ST	SW	S8	S1	SA	S2
Nominal Output (V)	12		24	32	48	80	125	200	250
Setting Range (A)	0.0 to	200 A	0.0 to 120 A	0.0 to 90 A	0.0 to 62.5 A	0.0 to 37.5 A	0.0 to 24 A	0.0 to 15 A	0.0 to 12 A
RMS Ripple (mA)	200		120	90	62.5	37.5	24	500	12
Line Regulation (mA)	200		120	90	125	93.75	48	200	24
Load Regulation (mA)	800		480	375	250	150	96	400	48
P-P Ripple (mA)		N/A							
Drift (Temp Stability)		$\pm 0.05 \%$ of ${ }_{\text {out }}$ Rated over 8 hours, after 30 min warm-up, constant Line, Load, and Temp							
Temp Coefficient (PPM/ ${ }^{\circ} \mathrm{C}$)		SL, SQ $=300$ PPM; All other modules are 200 PPM. Temp Coefficient at rack level is [Temp Coefficient (module level)] + [4500 PPM of $\mathrm{I}_{\text {out-max }}$]							
Pgm Accuracy (A)		0.7% digital, 1.3% of rated output max analog							
Pgm Resolution (mA)		79.2	26.4		13.2	10	5.2		2.6
Meas Accuracy		0.7\% + 0.7\% of Rated Output Max							
Meas Resolution		79.2		26.4	13.2	10	5.2		2.6
Transient Response		0 to 63% output current change in 7.5 mSec , residual value 1%, settling time 35 mSec							
Current Sense Method		Internal Shunt							

The PPCM can also provide web based horticultural lighting scheduling control with the Intelligent Horticultural Lighting Control (iHLC) software.

Intelligent Transfer Switch (iTS)
Up to 24000 W

SPECIAL FEATURES

- 5-year manufacturer's warranty
- Modular 8 channel A:B switch
- Standard 19" rack
- Reversable mounting tabs
- Designed for use with iHP and LCM4000 product families
- 100% digital control
- Intelligent zero current switching when used with Artesyn devices
Total Power
Up to 24 KW
Input Voltage
90 to 264 VAC Nominal Single Phase
\# of Outputs
Up to 8
Safety
- EN62368-1
- UL/CSA62368-1
- IEC62368-1
- Cloud based user configurable GUI
- Natural convection cooled (No Fan)
- Field upgradeable firmware
- Up to 16 racks are addressable from one control Node
- Configurable baud rate
- MTBF 400 K hours per Telecordia SR-332 Method 1 Case 3, Part Stress
- Product lifetime 10 years minimum (Modbus-RTU)
iTS Electrical Specifications - Housekeeping Power Supply Module

Parameter	Value
AC Input Voltage	90 to 264 VAC
AC Input Frequency	$50 / 60$ Hz Nominal
AC Input Fusing	Included for both input AC lines (Not user serviceable)
AC Inrush Current	Upon start-up from a "cold start", the maximum AC input current shall not exceed 50 A at 264 VAC 25C
Output to Relay Module	12 V @ 1 A per module; 3V3 as reference voltage $\pm 1 \%$

iTS Electrical Specifications - Relay Module
Parameter Value
Description
The relay is double break, capable for 25 A max continuous operation. Both output lines, positive and return, are switched. To prevent arcing, the relay is only switched when zero voltage / zero current is flowing through the contacts (Provided by master software control of the power source and Relay MCU.) The relay module shall support iHP modules with Nominal voltage rating of 125 VDC, 200 VDC and 250 VDC along with the 250 VAC output of the LCM4000HV. iHP modules connected in series for higher voltage output is allowed, but the load maybe derated so as Not to exceed the switching power rating of the relay
\# Inputs
One per relay module, up to 8 can be loaded in a single 2U rack
Nominal Input Voltage
Input Current Max
Input Current Fault

Ordering Information Model	Configuration
$73-779-008$	Fully configured, Rack with 8 relay modules
$73-779-007$	Rack with 7 relay modules
$73-779-006$	Rack with 6 relay modules
$73-779-005$	Rack with 5 relay modules
$73-779-004$	Rack with 4 relay modules
$73-779-003$	Rack with 3 relay modules
$73-779-002$	Rack with 2 relay modules
$73-779-001$	Rack with 1 relay module
$73-779-000$	Relay module only
$73-779-$ TBD	Blank relay module

PowerPro Connect Module (PPCM)

Part number: 73-778-000A (purchased separately)
The PPCM can provide web based horticultural lighting scheduling with the Intelligent Horticultural Lighting Control (iHLC) software. The PPCM connects to a wired ethernet network and to the iTS with MODBUS RTU.
Use with iHP for a for a complete LED solution.

Total Power

300 W (350 W some models)

\# of Outputs

Single

Output

12 to 60 V

Optional 5.0 V standby

Safety

- UL	$60950-1$
	$508 / 1598 / 1433$
- CSA	$60601-1$ Ed 3
- VDE	$60950-1$
	$60950-1$
- China	60601
- CB Scheme	Report/Cert

LCM300

Bulk Front End 300 W

SPECIAL FEATURES

- 300 W (350 W some models)
- Low cost
- $1.61 \times 4.0 \times 7.0$ in
- $7.1 \mathrm{~W} / \mathrm{in}^{3}$
- Industrial/Medical safety
- -40 to $70^{\circ} \mathrm{C}$ with derating
- Optional 5 V @ 2 A housekeeping
- High efficiency: 91\% @ 230 VAC
- Variable speed "Smart Fans"
- DSP controlled
- PMBus ${ }^{\text {TM }}$ compliant
- Conformal coat option
- $\pm 20 \%$ adjustment range
- Margin programming (300 W and 600 W models)
- OR-ing FET
- EMI Class B
- EN61000 immunity
- RoHS 2

Electrical Specifications
Input

Input Range	90 to 264 VAC (Operating) (127 to 374 VDC) $115 / 230$ VAC (Nominal) TERMINAL BLOCK
Frequency	47 to 63 Hz, Nominal 50/60
Input Fusing	Internal 8 A fuses, both lines fused
Inrush Current	≤ 20 A peak, either hot or cold start
Power Factor	0.98 typical, meets EN61000-3-2
Harmonics	Meets IEC 1000-3-2 requirements
Input Current	5 Arms max input current, @ 90 VAC
Hold up Time	20 ms minimum for Main O/P, @ full rated load
Efficiency	$>91 \%$ typical @ full Load/230 VAC Nominal
Leakage Current	<0.3 mA @ 264 VAC
ON/OFF Power Switch	N/A
Power Line Transient	MOV directly after the fuse
Isolation	PRI-Chassis 2500 VDC Basic PRI-SEC 4000 VAC Reinforced 2xMOPP SEC-Chassis 500 VDC

Environmental Specifications	-40 to $+70^{\circ} \mathrm{C}$, linear derating to 50% from 50 to $70^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	20 to 90%, Non-condensing. Operating. conformal coat option available
Humidity	$<45 \mathrm{dBA}, 80 \%$ load @ $40^{\circ} \mathrm{C}$; fan off when unit is inhibited
Fan Noise	Operating $-16,405 \mathrm{ft}(5000 \mathrm{~m})$ Storage $-30,000 \mathrm{ft}$
Altitude	MIL-STD-810F 516.5, Procedure I, VI. storage
Shock	MIL-STD-810F 514.5, Cat. 4, 10. storage
Vibration	

Electrical Specifications Output		
Output Rating	See ordering information table below	90 to 264 VAC
Set Point	$\pm 0.5 \%$	90 to 264 VAC
Total Regulation Range	Main output $\pm 2 \%$ 5 Vsb $\pm 1 \%$	Combined line/load/transient when measured at output terminal
Rated Load	310 W maximum	Derate linear to 50% from 50 to $70^{\circ} \mathrm{C}$
Minimum Load	Main output @ 0.0 A 5 Vsb @ 0.0 A	No loss of regulation
Output Noise (PARD)	$\begin{aligned} & \text { 1\% max p-p } \\ & 50 \text { mV max p-p } \end{aligned}$	Main output 5 Vsb output Measured with a $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitor on any output, 20 MHz
Output Voltage Overshoot	-	No overshoot/undershoot outside the regulation band during on or off cycle
Transient Response	< 300 ¢	50\% load step @ 1 A/ $\mu \mathrm{s}$ Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max Units in Parallel	-	Up to 10
Short Circuit Protection	Protection against damage	Bounce mode
Remote Sense	-	Compensation up to 500 mV
Output Isolation	-	Standard per safety requirements
Forced Load Sharing	To within 10% of all shared outputs	Analog sharing control
Over-Load Protection (OCP)	$\begin{aligned} & 105 \% \text { to } 125 \% \\ & 120 \% \text { to } 170 \% \end{aligned}$	Main output 5 Vsb output. Constant current or hiccup mode (software selectable)
Over-Voltage Protection (OVP)	125% to 145% 110% to 125%	12 V output 5 Vsb output
Over-Temperature Protection	10 to $15^{\circ} \mathrm{C}$ above safe operating area	Both PFC and output converter monitored

Ordering Information									
Model Number ${ }^{1}$	Output	Nominal Output Voltage Set Point	Set Point Tolerance	Adjustment Range	$\begin{aligned} & \text { Curr } \\ & \text { Min } \end{aligned}$	Max	Output Ripple P/P (0 to $50^{\circ} \mathrm{C}$)	Max Continuous Power	Combined Line/ Load Regulation
LCM300L	12 V	12 V	$\pm 0.5 \%$	9.6 to 14.4 V	0 A	25 A	120 mV	310	2\%
LCM300N	15 V	15 V	$\pm 0.5 \%$	12.0 to 19.5 V	0 A	20 A	150 mV	310	2\%
LCM300Q	24 V	24 V	$\pm 0.5 \%$	19.2 to 28.8 V	0 A	12.5 A	240 mV	310	2\%
LCM300U	36 V	36 V	$\pm 0.5 \%$	28.8 to 43.2 V	0 A	8.4 A	360 mV	310	2\%
LCM300W	48 V	48 V	$\pm 0.5 \%$	38.4 to 57.6 V	0 A	6.3 A	480 mV	310	2\%

[^5]
LCM600

Bulk Front End 600 W

SPECIAL FEATURES

- 600 W output power
- Low cost
- $2.4 \times 4.5 \times 7.5 \mathrm{in}$
- $7.41 \mathrm{~W} / \mathrm{in}^{3}$
- 5 V SELV standby (housekeeping)
- Industrial/Medical safety
- -40 to $70^{\circ} \mathrm{C}$ with derating
- 5 V housekeeping
- High efficiency: 89\% typical
- Variable speed "Smart Fans"
- DSP controlled front end
- Conformal coat option
- $\pm 20 \%$ adjustment range
- Margin programming
- OR-ing FET option
- Terminal block input option

Total Power

600 W

\# of Outputs

Single

Output

9.6 to 60 V

Optional 5.0 V standby

Safety

- UL	$60950-1$
	$508 / 1598 / 1433$
	$60601-1$
- CSA	$60950-1$
- VDE	$60950-1$
	60601
- China	CCC
- CB Scheme	Report/Cert

Electrical Specifications	
Input	85 to 264 VAC (Operating) $115 / 230$ VAC (Nominal) Input through standard IEC connector
Input Range	47 to 440 Hz, Nominal 50/60
Frequency	Internal 10 A fuses, both lines fused
Input Fusing	≤ 25 A peak, either hot or cold start
Inrush Current	0.99 typical, meets EN61000-3-2
Power Factor	Meets IEC 1000-3-2 requirements
Harmonics	8 A RMS max input current, at 100 VAC
Input Current	20 ms minimum for Main O/P, at full rated load
Hold up Time	$>88 \%$ at full load
Efficiency	<0.3 mA at 264 VAC
Leakage Current	N/A
ON/OFF Power Switch	MOV directly after the fuse
Power Line Transient	

Environmental Specifications	
Operating Temperature	-40 to $+70^{\circ} \mathrm{C}$, linear derating to 50% from 50 to $70^{\circ} \mathrm{C}$
Storage Temperature	-40 to $85^{\circ} \mathrm{C}$
Humidity	20 to 90%, Non-condensing. Operating. Conformal coat option available
Fan Noise	<45 dBA, 80% load at $30^{\circ} \mathrm{C}$
Altitude	Operating: Up to $16,405 \mathrm{ft}$ above sea level Storage: Up to 30,000 ft above sea level
Shock	MIL-STD-810F 516.5, Procedure I, VI. Storage
Vibration	MIL-STD-810F 514.5, Cat. 4, 10. Storage

Electrical Specifications Output		
Output Rating	See ordering information table below	85 to 264 VAC
Set Point	$\pm 0.5 \%$	85 to 264 VAC
Total Regulation Range	Main output $\pm 2 \%$ 5 Vsb $\pm 1 \%$	Combined line/load/transient when measured at output terminal
Rated Load	600 W maximum	Derate linear to 50% from 50 to $70^{\circ} \mathrm{C}$
Minimum Load	Main output @ 0.0 A 5 Vsb @ 0.0 A	No loss of regulation
Output Noise (PARD)	1\% max p-p 50 mV max $\mathrm{p}-\mathrm{p}$	Main output 5 Vsb output Measured with a $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitor on any output, 20 MHz
Output Voltage Overshoot	-	No overshoot/undershoot outside the regulation band during on or off cycle
Transient Response	< 300 ¢	50\% load step @ 1 A/ $\mu \mathrm{s}$ Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max Units in Parallel	-	Up to 10
Short Circuit Protection	Protection against damage	Bounce mode
Remote Sense	-	Compensation up to 500 mV
Output Isolation	-	Standard per safety requirements
Forced Load Sharing	To within 10% of all shared outputs	Analog sharing control
Over-load Protection (OCP)	105\% to 125\% 120% to 170%	Main output 5 Vsb output. Constant current or bounce mode option through software
Over-voltage Protection (OVP)	125% to 145% 110% to 125%	12 V output 5 V sb output
Over-temperature Protection	10 to $15^{\circ} \mathrm{C}$ above safe operating area	Both PFC and output converter monitored

Ordering Information								
Model Number ${ }^{1}$	Output	Nominal Output Voltage Set Point	Set Point Tolerance	Adjustment Range	$\begin{aligned} & \text { Cur } \\ & \text { Min } \end{aligned}$	Max	Output Ripple P/P (0 to $50^{\circ} \mathrm{C}$)	Combined Line/ Load Regulation
LCM600L	12 V	12 V	$\pm 0.5 \%$	9.6 to 14.4 V	0 A	54 A	120 mV	2\%
LCM600N	15 V	15 V	$\pm 0.5 \%$	12.0 to 19.5 V	0 A	44 A	150 mV	2\%
LCM600Q	24 V	24 V	$\pm 0.5 \%$	19.2 to 28.8 V	0 A	27 A	240 mV	2\%
LCM600U	36 V	36 V	$\pm 0.5 \%$	28.8 to 43.2 V	0 A	16.7 A	360 mV	2\%
LCM600W	48 V	48 V	$\pm 0.5 \%$	38.4 to 57.6 V	0 A	14 A	480 mV	2\%

1 For option codes, see Data Sheet

LCM1000

Bulk Front End 1000 W

SPECIAL FEATURES

- 1000 W output power
- Low cost
- $2.5 \times 5.2 \times 10.0 \mathrm{in}$
- $7.7 \mathrm{~W} / \mathrm{in}^{3}$
- Industrial/Medical safety
- -40 to $70^{\circ} \mathrm{C}$ with derating
- Optional 5 V @ 2 A housekeeping
- High efficiency: 90\% typical
- Variable speed "Smart Fans"
- DSP controlled
- Conformal coat option
- $\pm 10 \%$ adjustment range
- Margin programming
- OR-ing FET
- Low acoustic Noise

Total Power

1000 W

\# of Outputs

Single

Output

12 to 48 V

Optional 5.0 V standby

Safety

- ULcUL Recognized ITE (UL60950-1)
- ULcUL Recognized Medical (ANSI/AAMI ES60601-1)
- TUV-SuD ITE + Medical (EN60950-1 and EN60601-1)
- CE LVD (EN60950-1 + ROHS)
- BSMI
- CB Report
- Through Demko for IEC60950-1
- Through TUV-SuD for IEC60601-1
- CCC Approval

Electrical Specifications Input	
Input Range	90 to 264 VAC (Operating) 115/230 VAC (Nominal) TERMINAL BLOCK
Frequency	47 to 440 Hz , Nominal 50/60
Input Fusing	Internal 20 A fuses, both lines fused
Inrush Current	≤ 25 A peak, either hot or cold start
Power Factor	0.99 typical, meets EN61000-3-2
Harmonics	Meets IEC 1000-3-2 requirements
Input Current	12 A RMS max input current, at 100 VAC
Hold up Time	20 ms min for Main O/P, @ full rated load
Efficiency	> 90\% typical @ full load / 230 VAC Nominal
Leakage Current	< 0.4 mA at 264 VAC
ON/OFF Power Switch	N/A
Power Line Transient	MOV directly after the fuse
Isolation	PRI-Chassis 2500 VDC Basic PRI-SEC 4000 VAC Reinforced 2xMOPP SEC-Chassis 500 VDC

Environmental Specifications	
Operating Temperature	-40 to $+70^{\circ} \mathrm{C}$, linear derating to 75% from 60 to $70^{\circ} \mathrm{C}$
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$
Humidity	20 to 90%, Non-condensing. Operating. Conformal coat option available
Fan Noise	$<45 \mathrm{dBA}, 100 \%$ load at $30^{\circ} \mathrm{C}$
Altitude	Operating $-16,405 \mathrm{ft}(5000 \mathrm{~m})$ Storage $-30,000 \mathrm{ft}$
Shock	MIL-STD-810F 516.5, Procedure I, VI. Storage
Vibration	MIL-STD-810F 514.5, Cat. 4, 10. Storage

Electrical Specifications Output		
Output Rating	See table 1	90 to 264 VAC
Set Point	$\pm 0.5 \%$	90 to 264 VAC
Total Regulation Range	Main output $\pm 2 \%$ 5 Vsb $\pm 1 \%$	Combined line/load/transient when measured at output terminal
Rated Load	1000 W maximum	Derate linear to 50% from 50 to $70^{\circ} \mathrm{C}$
Minimum Load	Main output @ 0.0 A 5 Vsb @ 0.0 A	No loss of regulation
Output Noise (PARD)	1\% max p-p 50 mV max p-p	Main output 5 Vsb output Measured with a 0.1μ F Ceramic and 10μ F Tantalum Capacitor on any output, 20 MHz
Output Voltage Overshoot	-	No overshoot/undershoot outside the regulation band during on or off cycle
Transient Response	< $300 \mu \mathrm{Sec}$	50\% load step @ 1 A/ $\mu \mathrm{s}$ Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max Units in Parallel	-	Up to 10
Short Circuit Protection	Protected, No damage to occur	Bounce mode
Remote Sense	—	Compensation up to 500 mV
Output Isolation	-	Standard per safety requirements
Forced Load Sharing	To within 10% of all shared outputs	Analog sharing control
Over-load Protection (OCP)	105% to 125% 120% to 170%	Main output 5 V sb output
Over-voltage Protection (OVP)	125% to 145% 110% to 125%	12 V output 5 V sb output
Over-temperature Protection	10 to $15^{\circ} \mathrm{C}$ above safe operating area	Both PFC \& output converter monitored

Ordering Information									
Model Number ${ }^{1}$	Output	Nominal Output Voltage Set Point	Set Point Tolerance	Adjustment Range	Current Min	Max	Output Ripple P/P (0 to $50^{\circ} \mathrm{C}$)	Max Continuous Power	Combined Line/Load Regulation
LCM1000L	12 V	12 V	$\pm 0.5 \%$	10.8 to 13.2 V	0 A	83.3 A	120 mV	1000 W	2\%
LCM1000N	15 V	15 V	$\pm 0.5 \%$	13.5 to 16.5 V	0 A	66.7 A	150 mV	1000 W	2\%
LCM1000Q	24 V	24 V	$\pm 0.5 \%$	21.6 to 26.4 V	0 A	41.7 A	240 mV	1000 W	2\%
LCM1000U	36 V	36 V	$\pm 0.5 \%$	32.4 to 39.6 V	0 A	27.8 A	360 mV	1000 W	2\%
LCM1000W	48 V	48 V	$\pm 0.5 \%$	43.2 to 52.8 V	0 A	20.8 A	480 mV	1000 W	2\%

1 For option codes, see Data Sheet

Total Power

1500 W

\# of Outputs

Single

Output

12 to 60 V

Optional 5.0 V standby

Safety

- UL	$60950-1$
	$508 / 1598 / 1433$
	$60601-1$ Ed 3
- CSA	$60950-1$
- VDE	$60950-1$
	60601
- CB Scheme	Report/Cert

LCM1500

Bulk Front End

 1500 W
SPECIAL FEATURES

- 1500 W output power
- Low cost
- $2.5 \times 5.2 \times 10.0$ in
- 12 W per in ${ }^{3}$
- Industrial/Medical safety
- -40 to $70^{\circ} \mathrm{C}$ with derating
- Optional 5 V @ 2 A housekeeping
- High efficiency: 89\% typical
- Variable speed "Smart Fans"
- DSP controlled
- Conformal coat option
- $\pm 10 \%$ adjustment range
- Margin programming
- OR-ing FET
- Change to EMI Class A
- EN61000 immunity
- RoHS 2
- PMBUS

Electrical Specifications	
Input	90 to 264 VAC (Operating) $115 / 230 ~ V A C ~(N o m i n a l) ~$ TERMINAL BLOCK
Input Range	47 to 440 Hz, Nominal 50/60
Frequency	Internal 20 A fuses, both lines fused
Input Fusing	≤ 25 A peak, either hot or cold start
Inrush Current	0.99 typical, meets EN61000-3-2
Power Factor	Meets IEC 1000-3-2 requirements
Harmonics	18 Arms max input current, @ 100 VAC
Input Current	20 ms min for Main O/P, @ full rated load
Hold up Time	$>91 \%$ typical @ full Load/230 VAC Nominal
Efficiency	<0.3 mA @ 264 VAC
Leakage Current	N/A
ON/OFF Power Switch	MOV directly after the fuse
Power Line Transient	PRI-Chassis 2500 VDC Basic PRI-SEC 2500 VDC Reinforced SEC-Chassis 500 VDC
Isolation	

Environmental Specifications

Operating Temperature	-40 to $+70^{\circ} \mathrm{C}$, linear derating to 50% from 50 to $70^{\circ} \mathrm{C}$
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$
Humidity	20 to 90%, Non-condensing. Operating. Conformal coat option available
Fan Noise	$<45 \mathrm{dBA}, 80 \%$ load @ $30^{\circ} \mathrm{C}$
Altitude	Operating $-16,405 \mathrm{ft}(5000 \mathrm{~m})$ Storage $-30,000 \mathrm{ft}$
Shock	MIL-STD-810F 516.5, Procedure I, VI. Storage
Vibration	MIL-STD-810F 514.5, Cat. 4, 10. Storage

Electrical Specifications Output		
Output Rating	See ordering information table below	90 to 264 VAC
Set Point	$\pm 0.5 \%$	90 to 264 VAC
Total Regulation Range	Main output $\pm 2 \%$ $5 \mathrm{Vsb} \pm 1 \%$	Combined line/load/transient when measured at output terminal
Rated Load	1500 W maximum	Derate linear to 50% from 50 to $70^{\circ} \mathrm{C}$
Minimum Load	Main output @ 0.0 A 5 Vsb @ 0.0 A	No loss of regulation
Output Noise (PARD)	$\begin{aligned} & 1 \% \text { max p-p } \\ & 50 \mathrm{mV} \max \mathrm{p}-\mathrm{p} \end{aligned}$	Main output 5 Vsb output Measured with a $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitor on any output, $20 \mathrm{MHz}$
Output Voltage Overshoot	-	No overshoot/undershoot outside the regulation band during on or off cycle
Transient Response	< 300 us	50% load step @ 1 A/ $\mu \mathrm{s}$ Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max Units in Parallel	-	Up to 10
Short Circuit Protection	Protection against damage	Bounce mode
Remote Sense	-	Compensation up to 500 mV
Output Isolation	-	Standard per safety requirements
Forced Load Sharing	To within 10\% of all shared outputs	Analog sharing control
Over-load Protection (OCP)	$\begin{aligned} & 105 \% \text { to } 125 \% \\ & 120 \% \text { to } 170 \% \end{aligned}$	Main output 5 Vsb output. Constant current or bounce mode option through software.
Over-voltage Protection (OVP)	125% to 145% 110% to 125%	12 V output 5 Vsb output
Over-temperature Protection	10 to $15^{\circ} \mathrm{C}$ above safe operating area	Both PFC and output converter monitored

Ordering Information									
Model Number ${ }^{1}$	Output	Nominal Output Voltage Set Point	Set Point Tolerance	Adjustment Range	Current Min	Max	Output Ripple P/P (0 to $50^{\circ} \mathrm{C}$)	Max Continuous Power	Combined Line/Load Regulation
LCM1500L	12 V	12 V	$\pm 0.5 \%$	10.8 to 13.2 V	0 A	133 A	120 mV	1500	2\%
LCM1500N	15 V	15 V	$\pm 0.5 \%$	13.5 to 16.5 V	0 A	100 A	150 mV	1500	2\%
LCM1500Q	24 V	24 V	$\pm 0.5 \%$	21.6 to 26.4 V	0 A	67 A	240 mV	1500	2\%
LCM1500R	28 V	28 V	$\pm 0.5 \%$	25.2 to 30.8 V	0 A	53.6 A	280 mV	1500	2\%
LCM1500U	36 V	36 V	$\pm 0.5 \%$	32.4 to 39.6 V	0 A	43 A	360 mV	1500	2\%
LCM1500W	48 V	48 V	$\pm 0.5 \%$	43.2 to 52.8 V	0 A	33 A	480 mV	1500	2\%

1 For option codes, see Data Sheet

Total Power

3000 W

\# of Outputs

Single

Output

12 to 48 V

Safety

- UL/cUL Recognized ITE (UL60950-1)
- UL/cUL Recognized Medical (ANSI/AAMI ES60601-1)
- TUV-SuD ITE + Medical (EN60950-1 and EN60601-1)
- CE LVD (EN60950-1 + RoHS)
- CQC under GB17625.1, GB4943, GB9254
- CB Report
- through Demko for IEC60950-1
- through TUV-SuD for IEC60601-1
- through DEMKO for IEC62368-1

LCM3000

Bulk Front End 3000 W

SPECIAL FEATURES

- 3000 W output power
- Low cost
- $2.5 \times 7.0 \times 10.9$ in
- $15.7 \mathrm{~W} / \mathrm{in}^{3}$
- Industrial/Medical safety
- -40 to $70^{\circ} \mathrm{C}$ with derating

■ Optional 5 V @ 2 A housekeeping

- High efficiency: 91\% typical
- Variable speed "Smart Fans"
- DSP controlled
- Conformal coat option
- $\pm 25 \%$ adjustment range
- Margin programming
- VAR configurable to any voltage from a single unit
- Five-year warranty

Electrical Specifications Input	
Input Range	90 to 264 VAC (Operating) Derate to 1500 W below 180 VAC input 115/230 VAC (Nominal) 129 to 370 VDC TERMINAL BLOCK
Frequency	47 to 440 Hz , Nominal 50/60
Input Fusing	Internal 30 A fuses, both lines fused
Inrush Current	≤ 35 A peak, @ 110 VAC \& <60 A @ 230 VAC
Power Factor	0.99 typical, meets EN61000-3-2
Harmonics	Meets IEC 1000-3-2 requirements
Input Current	20 A RMS max input current, @ 100 VAC
Hold Up Time	14 ms min for Nominal output voltage, @ full rated load
Efficiency	> 91\% typical @ full load / 230 VAC Nominal
Leakage Current	< 0.4 mA at 264 VAC
ON/OFF Power Switch	N/A
Power Line Transient	MOV directly after the fuse
Isolation	PRI-Chassis 2500 VDC Basic PRI-SEC 4000 VAC Reinforced 2xMOPP SEC-Chassis 500 VDC

Environmental Specifications	
Operating Temperature	-40 to $+70^{\circ} \mathrm{C}$, linear derating to 50% from $50^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Operation at $-40^{\circ} \mathrm{C}$ requires a 5 min operating warm-up @ $-20^{\circ} \mathrm{C}$
Storage Temperature	-40 to $+85^{\circ} \mathrm{C}$
Humidity	10 to 90%, Non-condensing, operating, conformal coat option available
Acoustic Noise	< TBD dBA, 80% load @ $30^{\circ} \mathrm{C}$
Altitude	Operating $-16,405 \mathrm{ft}(5000 \mathrm{~m})$ Storage $-30,000 \mathrm{ft}$
Shock	MIL-STD-810F 516.5, Procedure I, VI
Vibration	MIL-STD-810F 514.5, Cat. 4, 10

Electrical Specifications Output		
Output Rating	See table 1	180 to 264 VAC
Set Point	± 0.5 \%	90 to 264 VAC
Total Regulation Range	Main output $\pm 1 \%$ $5 \mathrm{Vsb} \pm 5 \%$	Combined line/load when measured at output terminal
Rated Load	3000 W maximum (Derate to 2000 W when input is $<180 \mathrm{VAC}$)	Derate linear to 50% from 50 to $70^{\circ} \mathrm{C}$
Minimum Load	Main output @ 0.0 A 5 Vsb @ 0.0 A	No loss of regulation
Output Noise (PARD)	$\begin{aligned} & 1 \% \max p-p \\ & 100 \operatorname{mV} \max p-p \end{aligned}$	Main output 5 Vsb output Measured with a $0.1 \mu \mathrm{~F}$ Ceramic and $10 \mu \mathrm{~F}$ Tantalum Capacitor on any output, 20 MHz
Output Voltage Overshoot	<3\% of voltage setting must settle within 300 mSec	Rise is monotonic
Transient Response	< $300 \mu \mathrm{Sec}$	50% load step @ 1 A/ $\mu \mathrm{s}$ Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max Units in Parallel	-	Up to 8
Short Circuit Protection	Protected, No damage to occur	Bounce mode
Remote Sense	-	Compensation up to 500 mV
Output Isolation	-	Standard per safety requirements
Forced Load Sharing	To within 10% of all shared outputs	Digital sharing control
Over-load Protection (OCP) Constant Current Mode	105% to 125% 120% to 170%	Main output 5 Vsb output
Over-voltage Protection (OVP)	125\% to 145\% 110% to 125%	12 V output 5 V sb output
Over-temperature Protection	10 to $15^{\circ} \mathrm{C}$ above safe operating area	Both PFC and output converter monitored

Ordering Information								
Model Number	Nominal Output Voltage Set Point	Adjustment Range		Max I	Output Ripple P/P (0 to $50^{\circ} \mathrm{C}$)	Combined Line/Load Regulation	Trim Range $\pm 25 \%$	"Vprog Adjustment" 0 V to $6 \mathrm{~V}(\mathbf{2 0 \%}$ to 125% Vout)
		Max I	Max Power (3000 W)					
LCM3000L-T	12 V	2.4 to 12 V	12 to 15 V	250 A	120 mV or 1%, whichever is higher	1\%	9 to 15 V	2.4 to 15 V
LCM30000-T	18 V	3.6 to 18 V	18 to 22.5 V	166.7 A	180 mV or 1%, whichever is higher	1\%	13.5 to 22.5 V	3.6 to 22.5 V
LCM3000Q-T	24 V	4.8 to 24 V	24 to 30 V	125 A	240 mV or 1\%, whichever is higher	1\%	18 to 30 V	4.8 to 30 V
LCM3000U-T	36 V	7.2 to 36 V	36 to 45 V	83.3 A	360 mV or 1\%, whichever is higher	1\%	27 to 45 V	7.2 to 45 V
LCM3000W-T	48 V	9.6 to 48 V	48 to 60 V	62.5 A	480 mV or 1\%, whichever is higher	1\%	36 to 60 V	9.6 to 60 V
LCM30007-T	72 V	14.4 to 72 V	72 to 90 V	41.7 A	720 mV or 1\%, whichever is higher	1\%	54 to 90 V	14.4 to 90 V

[^6]2 Set Point Tolerance is $\pm 0.5 \%$
3 Outputs above 60 VDC are Not SELV rated

Total Power

LCM4000HV: 4000 W
LCM12K: 12 kW

Input Voltage

LCM4000HV: Single Phase
187 to 264 VAC
311 to 528 VAC

LCM12K: Three Phase

187 to 229 VAC
342 to 528 VAC
540 to 660 VAC (WYE with Neutral)
Output

LCM4000HV:

Voltage source: 100 to 300 VDC
Current source: 0 to 16 A

Compliance

- EMI Class A
- EN61000 Immunity
- RoHS 3

Safety

- UL 62368-1 Listed
- CSA 62368-1 Listed
- EN 62368-1 Listed
- IEC 62368-1 Listed
- CB Certificate and Report (IEC 62368-1/IEC 60950-1)
- CE (LVD+RoHS)

LCM4000HV/LCM12K

4000 W Bulk Front End/12 kW Power Shelf Centralized Power for LED Horticulture Lighting

SPECIAL FEATURES

- Wide input voltage range
- High efficiency: up to 95%
- Industrial safety
- Five-year warranty
- Low cost

LCM4000HV:

- 4000 W output power
- $480 \mathrm{~mm} \times 140 \mathrm{~mm} \times 40.3 \mathrm{~mm}$
- 38 W per cubic inch
- Variable speed "Smart Fans"
- Dust control for fan cooling
- DSP controlled
- Digital and analog communication
- Scales easily (Module/Shelf/Rack)
- Meets DLC 2.1 requirements
- Supports Artesyn iTS and IHLC LCM12K:
- Accepts 3 types of input configurations (3-PH delta 4W, 3-PH wye 4W, 3-PH wye 5 W)
- Houses three 4 kW power modules
- $446.3 \mathrm{~mm} \times 504.3 \mathrm{~mm} \times 43.7 \mathrm{~mm}$

Electrical Specifications Input - LCM4000HV	
Input Range ${ }^{1}$	187 to 264 VAC 311 to 528 VAC
Frequency	47 to 63 Hz, Nominal $50 / 60$ Hz
Input Fusing	Both lines fused
Inrush Current	<60 A peak at 264 VAC, <60 A peak at 528 VAC
Power Factor	0.98 at 100\% load, at 208VAC input 0.97 at 100\% load, at 480 VAC input
Harmonics	Meets IEC 61000-3-12 requirements
Input Current	25 A max at 180 VAC
No Load Power	35 W max at 180 VAC
Efficiency	94.0% typical
Leakage Current	<5 mA at 264/528 VAC, 60 Hz
Isolation Voltage	Primary to Protective Earth (PE) $=4000$ VDC Primary to Secondary $=4000$ VDC Secondary to Protective Earth (PE) $=3200$ VDC Primary to User-Accessible $=6000$ VDC Secondary to User-Accessible $=5000$ VDC
Input - LCM12K	187 to 229 VAC (3-PH 4W) 342 to 528 VAC (3-PH 4W. Add Neutral for 600 VAC)
Input Range ${ }^{1}$	45 A max per phase at 187 VAC 25 A max per phase at 342 VAC
Input Current	

[^7]| Environmental Specifications |
| :--- |
| Operating Conditions |
| Operating Temperature |
| Storage Temperature |
| Operating Humidity |
| Storage Humidity |
| Operating Altitude $50^{\circ} \mathrm{C}$ at 100% rated load, $50^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ derate to $85^{\circ} \mathrm{C}$ |
| Storage Altitude |
| Shipping and Handling |
| Cooling |
| Vibration and Shock 90% non condensing |

Ordering Information LCM4000HV					
Description	Model Number	Input Range	Default Output Setting ${ }^{1}$		
			Output Mode	Output Current	Output Voltage
Standalone 4 kW module	LCM4000HV-T-P	187 to 264 VAC	Current Source	0 A	250 VDC
	LCM4000HV-T-S	311 to 528 VAC	Current Source	0 A	250 VDC
Pluggable 4 kW module for shelf use	LCM4000HV-P-P	187 to 264 VAC	Current Source	0 A	250 VDC
	LCM4000HV-P-S	311 to 528 VAC	Current Source	0 A	250 VDC

1 Output voltage and current adjustment range please refer to Electrical Specifications section.

LCM12K		Description
Model Number	$12 \mathrm{~kW} \mathrm{250} \mathrm{V} \mathrm{1U} \mathrm{shelf}$	Input Range
LCM12K-SHF-N	$12 \mathrm{~kW} \mathrm{250} \mathrm{V} \mathrm{1U} \mathrm{shelf}$	High line, 600 VAC W/NEUTRAL
LCM12K-SHF-P	$12 \mathrm{~kW} \mathrm{250} \mathrm{V} \mathrm{1U} \mathrm{shelf}$	Low line, 200/220/230/240 VAC
LCM12K-SHF-S	1 U blank filler panel	High line, 380/480 VAC
LCM12K-BLK		N/A

Xsolo
Ultra-compact, High-efficiency 500 W and 1000 W Single Output Power Supplies

SPECIAL FEATURES

- Single output voltages are 24 V , 36 V , or 48 V with wide adjustment ranges and user-defined set-points
- Ultra high efficiency, > 92\%
- Low profile: 1 U height (40 mm)
- Convection-cooled 500 W
- Fan-cooled 1000 W (variable speed fan)

TYPICAL APPLICATIONS

- Industrial
- Test and measurement
- Acoustically sensitive laboratory and medical environments

24, 36, 48
24, 36, 48
Safety

- IEC60601-1 2nd and 3rd edition
- IEC60601-1-2 4th edition (EMC)
- IEC60950 2nd edition
- 2 MOPP
- SEMI F47 ${ }^{1}$
- MIL-STD-810G ${ }^{2}$

1 SEMI F47 compliant at input voltages > 160 VAC. Consult Advanced Energy for details.
2 Consult Advanced Energy for MIL810G report (enhanced ruggedisation available as an option).

Ordering Information							
Model	Power (W)	Output Voltage	Output Current (A)	Medical Approval UL/EN60601-1, 3rd Edition	Industrial Approval UL/EN60950, 2rd Edition		
XS500-24	504	24	21.0	Yes	Yes		
XS1000-24	1008	24	42.0	Yes	Yes		
XS500-36	504	36	14.0	Yes	Yes		
XS1000-36	1008	36	28.0	Yes	Yes		
XS500-48	504	48	10.5	Yes	Yes		
XS1000-48	1008	48	21.0	Yes	Yes		
Model	Vnom (W)	Description	Set Point Adjust Range (V)	Dynamic Vtrim Range (V)	Imax (A)	Remote Sense	Power Good
XS500-24	24	Convection-cooled U-channel	19 to 28	14 to 28	21.0	Yes	Yes
XS1000-24	24	Enclosed fan-cooled	19 to 28	14 to 28	42.0	Yes	Yes
XS500-36	36	Convection-cooled U-channel	26 to 40	20 to 40	14.0	Yes	Yes
XS1000-36	36	Enclosed fan-cooled	26 to 40	20 to 40	28.0	Yes	Yes
XS500-48	48	Convection-cooled U-channel	36 to 58	29 to 58	10.5	-	Yes
XS1000-48	48	Enclosed fan-cooled	36 to 58	29 to 58	21.0	Yes	Yes

Environmental Specifications

Parameter	Conditions/Description	Min	NOM	Max	Units
Operating Temperature	-40	-	+70	-	
Storage Temperature	-40	-	+85	-	${ }^{\circ} \mathrm{C}$
Derating	See the designer's manual for full temperature deratings	-	-	-	-
Relative Humidity	Non-condensing	5	-	95	$\% \mathrm{RH}$
Shock and Vibration	Designed to meet MIL810 G ${ }^{1}$	-	55	-	G
Altitude	EN60601-1 Operational: 3000 m, Storage 8000 m	-	3000	-	m
	EN60950 Operational: 5000 m, Storage 8000 m	-	5000	-	m

[^8]
Safety

- UL UL60950 (UL recognized)
- NEMKO EN60950
- TÜV EN60950
- CE Mark
- CB Report

HPS \& UFE

Distributed Power Bulk Front End 3000 to 12000 W

SPECIAL FEATURES

- EN61000-3-2 harmonic compliance
- Built-in EMI filter
- Low output ripple
- +5 V standby output
- Built-in cooling fans

N 1 redundant

- $\mathrm{N}+1$ redundant

Voltage Availability		
Model	HPS3000	UFE
Wattage	$3000{ }^{3}$	2000 W ${ }^{4}$
Input Voltage	90 to 140 VAC 180 to 264 VAC	90 to 265 VAC
Available Standard Output Voltages (order code) ${ }^{1}$		
12 (L)		
24 (Q)		-
28 (R)		-
30 (S)		
48 (W)	-	-
54 (X)		-
60 (Y)		
Available Options	See Note 1	
Corresponding Rack	See Note 2	UFR6000J

HPS3000 Electrical Specifications
Input
Input Range (Operating)
Input Range (Nominal)
180 to 264 VAC 90 to 140 VAC
Frequency
1100 VAC 110
Input Fusing
Inrush Current
Power Factor
Internal 25 Az fuses (both lines fused)
Input Current
Holdup Time
Leakage Current
Power Line Transient

[^9]| Environmental Specific HPS3000 | ations |
| :---: | :---: |
| Operating Temp. | -10 to $40^{\circ} \mathrm{C}$ |
| Storage Temp. | -40 to $85^{\circ} \mathrm{C}$ |
| Cooling | External fans with Fan Fail and Fan Speed control |
| Humidity | Operating/Storage: 5 to 95\% Non-condensing |
| Altitude | Operating: Up to 10,000 ft above sea level Storage: Up to 30,000 ft above sea level |
| Vibration/Shock | Non-operational 5G Sine sweep from 5 to 500 Hz , dwelling at resonant frequencies for one hour each |
| RoHS Compliant | Yes |
| Output | |
| Output Rating | ```48 V @ 62.0 A (180 to 264 VAC) 5 Vsb @ 3.0 A 48 V @ 29.4 A (90 to 140 VAC) 5 V @ 3 A``` |
| Set Point | -4% to $+17 \%$ through $1^{2} \mathrm{C}$ |
| Total Regulation Range | $48 \mathrm{~V} \pm 10 \%$; $5 \mathrm{Vsb} \pm 4 \%$ (line/load/transient when measured at output connection) |
| Rated Load | 3000 W max @ 200 VAC Input 1500 W max @ 110 VAC Input
 (No derating over operating temperature range) |
| Minimum Load | 48 V @ 0.0 A; 5 Vsb @ 0.0 A with No loss of regulation |
| Output Noise | 480 mV max P-P for 48 V output 100 mV max P-P for 5 Vsb output Measured with a 0.1 F Ceramic and 10 F Tantalum capacitor on any input |
| Output Voltage Overshoot | $\pm 5 \%$ maximum of Nominal voltage setting |
| Transient Response | 5\% maximum deviation (50\% load step @ $1 \mathrm{~A} / \mu \mathrm{s}$. Step load valid between 10 to 100\% of output rating) |
| Max Units in Parallel | Up to 4 (total power in 1U19" rack is 12 KW) |
| Short Circuit Protection | 120 to 130\% of rated output (output to return) |
| Forced Load Sharing | Within 10% of all shared outputs (digital sharing control) |
| Over-current Protection (OCP) | 120 to 130% for 48 V output 100 to 125% for 5 V sb output |
| Over-voltage Protection (OVP) | 110 to 120% for 48 V output 110 to 125% for 5 V sb output |
| Over-temperature Protection | 10 to $15^{\circ} \mathrm{C}$ above safe operating area. (Both PFC and output converter monitored. 5 V sb will operate under over-temperature condition. Built-in hysteresis.) |

BULK POWER

Rack Ordering Information ${ }^{1}$		
Module	UFE1300/2000	HPS3000
Rack \#	UFR6000	HPR12K
\# of Slots	3	4
Total Power	6000 W	12000 W

Ordering Information

HPS3000-9-001	High airflow performance	HPR120K-00-001
HPS3000-9	Standard fans	HPR12K-00

1 See website for option codes on HPR racks.

Ordering Information									
Rated Output Power	Outp Vout Min	Voltage Max	Output Current (Min)	$\begin{aligned} & \text { Power Limit } \\ & +15 \% /-0 \% \\ & \text { Vout (min) } \end{aligned}$	Line Range at Turn On (Auto Ranging)	Operating Line Range	Current Limit (Vout) < Vout (min)	Model Numbers	Order Number
24 Vout Models									
1300 W	21 V	28.5 V	0 A	1300 W	90 to 264 VAC	65 A	65 A	UFE1300-96S24PJ	UFE1300-5
48 Vout Models									
1300 W	42 V	57 V	0 A	1300 W	90 to 264 VAC	33 A	33 A	UFE2000-96S48PJ	UFE2000-9
2000 W	42 V	57 V	0 A	2000 W	180 to 264 VAC	52 A	52 A		
1300 W	42 V	57 V	0 A	1300 W	90 to 264 VAC	33 A	33 A	UFE2000-96S48PDJ	UFE2000-9-HD
2000 W	42 V	57 V	0 A	2000 W	180 to 264 VAC	52 A	52 A		
1300 W	42 V	57 V	0 A	1300 W	90 to 264 VAC	33 A	33 A	UFE2000-96S48PHDJ	UFE2000-9-D
2000 W	42 V	57 V	0 A	2000 W	180 to 264 VAC	52 A	52 A		

Total Power

600 W

Input Voltage

100 to 240 V
\# of Outputs
Single

Safety

- Conforms to UL 60950-1 and UL 62368-1
- Certified to CAN/CSA C22.2 No. 60950-1 \& 62368-1

iLS600 and iLS600-R Series

Intelligent Laboratory Power 600 W Bench Programmable Power Supplies

SPECIAL FEATURES

- 600 W with extended range
- LXI certified
- 5 models: up to 400 V and 33 A
- Small, high-density $1 \cup$ package

APPLICATIONS

- Test and Measurement
- ATE
- Wireless digital remote sense
- Built-in voltage and current measurement
- Full OCP and OVP protection
- Series and parallel operation

iLS600 and iLS600-R Series 600 W LXI Certified Programmable Power Supplies ${ }^{6}$					
iLS600 Model:	$\begin{aligned} & \text { iLS600-3 / } \\ & \text { iLS600-3-R } \end{aligned}$	$\begin{aligned} & \text { iLS600-5 / } \\ & \text { iLS600-5-R } \end{aligned}$	$\begin{array}{\|l} \hline \text { iLS600-10 / } \\ \text { iLS600-10-R } \end{array}$	$\begin{array}{\|l} \mid \text { iLS600-20 / } \\ \text { iLS600-20-R } \end{array}$	$\begin{aligned} & \text { iLS600-40 / } \\ & \text { iLS600-40-R } \end{aligned}$
Output ${ }^{1}$					
Voltage, Volts	30 V	50 V	100 V	200 V	400 V
Current, Amps	33 A	20 A	10 A	5 A	2.5 A
Power, Watts	600 W				
Output Ripple \& Noise ${ }^{2}$					
RMS Constant Voltage	20 mV	100 mV	150 mV	150 mV	50 mV
P-P Constant Voltage	60 mV	100 mV	100 mV	100 mV	200 mV
Regulation					
Load: 10-90\% Voltage	15 mV	25 mV	50 mV	100 mV	200 mV
Load: 10-90\% Current	15 mV				
Line: 100-132 VAC Input ${ }^{2,3}$ Voltage	15 mV	25 mV	50 mV	100 mV	200 mV
Line: 100-132 VAC Input ${ }^{2,3}$ Current	15 mV				
Line: 180-260 VAC Input ${ }^{2,3}$ Voltage	15 mV	25 mV	50 mV	100 mV	200 mV
Line: 180-260 VAC Input ${ }^{2,3}$ Current	15 mV				

iLS600 and iLS600-R Series 600 W LXI Certified Programmable Power Supplies ${ }^{6}$					
iLS600 Model:	$\begin{array}{\|l} \hline \text { iLS600-3 / } \\ \text { iLS600-3-R } \end{array}$	$\begin{aligned} & \text { iLS600-5 / } \\ & \text { iLS600-5-R } \end{aligned}$	$\begin{aligned} & \text { iLS600-10 / } \\ & \text { iLS600-10-R } \end{aligned}$	$\begin{aligned} & \text { iLS600-20 / } \\ & \text { iLS600-20-R } \end{aligned}$	$\begin{aligned} & \text { iLS600-40 / } \\ & \text { iLS600-40-R } \end{aligned}$
Programming Accuracy ${ }^{1}$					
Voltage 0.1\%+	15 mV	25 mV	50 mV	100 mV	200 mV
Current 0.1\%+	66 mA	40 mV	20 mA	10 mA	5 mA
Measurement Accuracy					
Voltage 0.1\%+	15 mV	25 mV	50 mV	100 mV	200 mV
Current 0.1\%+	60 mA	40 mA	15 mA	10 mA	5 mA
Transient Recovery Time ${ }^{3}$					
Time	$\leq 1 \mathrm{~ms}$				
Supplemental Characteristics*					
Output response time (settle to within $\pm 1 \%$ of the rated output, with a resistive load)					
Up, Full Load, Seconds	0.08 s				
Down, Full Load, Seconds	0.08 s				
Down, No Load, Seconds	0.50 s				
Command Response Time ${ }^{4}$, Milliseconds	50 ms				
Data Readback Transfer Time ${ }^{5}$, Milliseconds	5 ms				
Remote Sense Compensation Volts/Load Lead	1 V	1 V	2 V	4 V	4 V
Over-Voltage Protection					
Range, Volts	0.5-33 V	0.5-55 V	0.5-110 V	0.5-220 V	0.5-440 V
Accuracy, Volts	0.3 V	0.5 V	1.0 V	2.0 V	4.0 V
Output Ripple and Noise ${ }^{2}$, CC rms, Milliamps	7 mA	5 mA	5 mA	5 mA	10 mA
Programming Resolution Voltage 0.05\%+	10 mV	25 mV	50 mV	100 mV	200 mV
Measurement Resolution Current 0.05\%+	20 mA	20 mA	10 mA	5 mA	2.5 mA
Front Panel Display Accuracy					
Voltage 0.1\%+	10 mV	25 mV	50 mV	100 mV	200 mV
Current 0.1\%+	33 mA	20 mA	10 mA	5 mA	2.5 mA
Mechanical					
Dimensions	Height $1.73 \mathrm{in} .(44 \mathrm{~mm}) \times$ Width 8.82 in . (224 mm) x Depth $10.30 \mathrm{in} .(262 \mathrm{~mm})$				
Weight	$6 \mathrm{lbs} .(2.7 \mathrm{Kg}$)				

1 Minimum voltage is guaranteed at greater than 1% of the rated output voltage. Minimum current is guaranteed at greater than 1% of the rated output current.
2 Measured with 20 MHz bandwidth and excluding line frequency ripple (see application note AN024 for measurement details).
3 Time for output voltage to recover within 0.5% of its rated output for a load change from 10 to 90% of its rated output current.
Voltage set point from 10% to 100% of rated output.
4 Add this to the output reopens time to obtain the total programming time.
5 Time to provide data back to the controller using LAN interface (does not include A/D conversion time).
6 iLS600-R series come with rear ports.

* Supplemental characteristics are not warranted but are descriptions of typical performance determined either by design or type testing.

Total Power

1500 W

Input Voltage

100 to 240 V

\# of Outputs

Single

Safety

- Conforms to UL 60950-1 and UL 62368-1
- Certified to CAN/CSA C22.2 No. 60950-1 \& 62368-1

iLS1500 Series

Intelligent Laboratory Power 1500 W Rack Programmable Power Supplies

SPECIAL FEATURES

- 1500 W with extended range
- LXI certified
- 5 models: up to 400 V and 70 A
- Small, high-density $1 \cup$ package

APPLICATIONS

- Test and Measurement
- ATE
- Wireless digital remote sense
- Built-in voltage and current measurement
- Full OCP and OVP protection
- Series and parallel operation
iLS1500 Series 1500 W LXI Certified Programmable Power Supplies

| iLS1500 Model: | iLS1500-3 | iLS1500-5 | iLD1500-10 | iLS1500-20 | iLS1500-40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Output ${ }^{1}$ | | | | | |
| Voltage, Volts | 30 V | 50 V | 100 V | 200 V | 400 V |
| Current, Amps | 70 A | 40 A | 20 A | 10 A | 5 A |
| Power, Watts ${ }^{6}$ | 1500 W |

RMS Constant Voltage	10 mV	20 mV	40 mV	80 mV	100 mV
P-P Constant Voltage	45 mV	75 mV	100 mV	200 mV	300 mV

Regulation

Load: $10-90 \% ~-~$ Voltage	0.05%	0.05%	0.05%	0.05%	0.05%
Load: $10-90 \%-$ Current	0.05%	0.05%	0.10%	0.05%	0.05%

Line (Change from 100 to 132 VAC Input or 180 to 260 VAC Input):

Voltage	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%
Current	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%
Programming Accuracy ${ }^{1}$					
Voltage	0.10\%	0.15\%	0.10\%	0.10\%	0.10\%
Current	0.20\%	0.15\%	0.15\%	0.15\%	0.15\%
Measurement Accuracy					
Voltage (0.1\%+)	0.10\%	0.15\%	0.10\%	0.10\%	0.10\%
Current (0.1\%+)	0.20\%	0.15\%	0.15\%	0.15\%	0.15\%
Transient Recovery Time ${ }^{3}$					
Time	$\leq 1.5 \mathrm{~ms}$	≤ 1.5 ms	$\leq 1.5 \mathrm{mss}$	$\leq 1.5 \mathrm{~ms}$	≤ 1.5 ms

iLS1500 Series 1500 W LXI Certified Programmable Power Supplies

iLS1500 Model:	iLS1500-3	iLS1500-5	iLD1500-10	iLS1500-20	iLS1500-40

Supplemental Characteristics*
Output response time (settle to within $\pm 1 \%$ of the rated output, with a resistive load)

Up, 10-90\%, Milliseconds	15 ms	30 ms	25 ms	30 ms	35 ms
Down, 90-10\%, Milliseconds	25 ms	25 ms	25 ms	45 ms	40 ms
Down, No Load, Seconds	<2.5 s	<3.0 s	<4.0 s	<10.0 s	<10.0 s
Command Response Time ${ }^{4}$, Milliseconds	50 ms				
Data Readback Transfer Time ${ }^{5}$, Milliseconds	5 ms				
Remote Sense Compensation Volts/Load Lead	1 V	1 V	2 V	4 V	4 V
Over-Voltage Protection					
Range, Volts	$0.5-33 \mathrm{~V}$	$0.5-55 \mathrm{~V}$	$0.5-110 \mathrm{~V}$	0.5-220 V	0.5-440 V
Accuracy, Volts	0.3 V	0.5 V	1.0 V	2.0 V	4.0 V
Output Ripple and Noise 2, CC rms, Milliamps	20 mA	10 mA	10 mA	5 mA	5 mA
Programming Resolution ${ }^{1}$	0.1\%				
Measurement Resolution ${ }^{1}$	0.1\%				
Front Panel Display Accuracy					
Voltage	0.10\%	0.15\%	0.15\%	0.10\%	0.10\%
Current	0.20\%	0.15\%	0.10\%	0.15\%	0.15\%
Mechanical					
Dimensions	Height $1.73 \mathrm{in} .(44 \mathrm{~mm}) \times$ Width $19.0 \mathrm{in} .(483 \mathrm{~mm}) \times$ Depth $15.5 \mathrm{in} .(394 \mathrm{~mm})$				
Weight	$12.8 \mathrm{lbs} .(5.8 \mathrm{Kg}$)				

1 Rating is percent of full scale. Rating is for operation between 10% of minimum voltage or current rating to 100% of voltage rating and the current rating at that voltage. Minimum voltage is guaranteed at greater than 1% of the rated output voltage. Minimum current is guaranteed at greater than 1% of the rated output current.
2 Measured with 20 MHz bandwidth and excluding line frequency ripple (see application note AN024 for measurement details)
3 Time for output voltage to recover within 0.5% of its rated output for a load change from 10 to 90% of its rated output current.
Voltage set point from 10% to 100% of rated output.
4 Add this to the output reopens time to obtain the total programming time.
5 Time to provide data back to the controller using LAN interface (does not include A/D conversion time).
61500 W Output is only available with an AC input of 110 VAC or grater. With a lower AC line, output will be limited to 1100 W .

* Supplemental characteristics are not warranted but are descriptions of typical performance determined either by design or type testing. Specifications subject to change without notice. Contact Versatile Power for full specifications and additional information.

DISTRIBUTED AND CRPS POWER

Distributed and CRPS Power Systems

Data Center Front End Power
AC and DC Inputs Available
450 to 3000 W

Voltage Availability									
Model	12 V						24 V	48 V	PMBus
	(-3)	(-5)	(-9)						
DS450	\bullet								
DS450DC	\bullet								
DS495SPE	\bullet								
DS500SDC	\bullet								
DS750PED	\bullet								
DS760SL	\bullet								
DS800SL	\bullet								
DS1100PED	\bullet								
DS1100SDC	\bullet								
DS1100SLPE	\bullet								
DS1100TDC-3	\bullet								
DS1200	\bullet								
DS1200DC	\bullet								
DS1600SPE	\bullet								
DS2000SPE	\bullet								
DS2400SPE	\bullet								
DS3000DC	\bullet								
DS3000TE	\bullet								

- Available

SPECIAL FEATURES

- Active power factor correction
- EN61000-3-2 harmonic compliance
- Active AC inrush control
- High density
- Outputs + 12 VDC with some +48 VDC models available
- 3.3 VDC standby
- 12.0 VDC standby on some models
- Options for 5 V standby voltage
- No minimum load required
- Hot plug operation
- N+1 redundant
- Internal OR-ing FETs
- Active current sharing
- Built-in cooling fans
- $I^{2} C$ Interface with EEPROM for FRU data
- Internal fan speed control with fan fail signal
- DC Input
- DSR1 rack for DS650/850.

Ordering part number is 73-762-002. Standard 19" 1 U fits up to 5 modules (4250 W)

- Options for reverse airflow
- Platinum Plus efficiency on some models

Safety	
UL	UL60950 (UL recognized)
NEMKO	EN60950
TÜV	EN60950
CE	Mark
CB	Report

DISTRIBUTED AND CRPS POWER

Specifications				
	DS450-3	DS450DC-3	DS495SPE-3	DS500SDC-3
Input				
Input Range	90 to 264 VAC	40 to 72 VDC	90 to 264 VAC	-36 to -72 VDC
Frequency	47 to 63 Hz	DC	47 to 63 Hz	N/A
Efficiency	80\% Typ	80\% Typ	94\% Typ Platinum	90\% Typ
EMI/RFI	Class B	N/A	Class A	Class A
Leakage Current	1.4 mA @ 240 V	N/A	1.0 mA	N/A
Outputs				
Output Main	$12 \mathrm{~V} / 37 \mathrm{~A}$	$12 \mathrm{~V} / 37 \mathrm{~A}$	$12 \mathrm{~V} / 41.2 \mathrm{~A}$	$12 \mathrm{~V} / 41.6 \mathrm{~A}$
Output Stand-By	$3.3 \mathrm{Vsb} / 3 \mathrm{~A}$	$3.3 \mathrm{Vsb} / 3 \mathrm{~A}$	$12 \mathrm{~V} / 3.0 \mathrm{~A}$	$12 \mathrm{~V} / 3.0 \mathrm{~A}$
OCP/OVP/OTP	Yes	Yes	Yes	Yes
${ }^{2} \mathrm{C}$ C Control	Yes	Yes	Yes	Yes
Environmental				
Operating Temp	-10 to $50^{\circ} \mathrm{C}$	-10 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$
Derating	N/A	N/A	N/A	N/A
Storage	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$
RoHS Compliant	Yes	Yes	Yes	Yes
MTBF	300K Hours	500K Hours	> 900K Hours	> 500K Hours
Other				
Size (in)	$1.57 \times 3.07 \times 11.05$ in	$1.57 \times 3.07 \times 11.05$ in	$1.57 \times 3.39 \times 7.73$ in	$1.57 \times 3.39 \times 7.73$ in
Size (mm)	$40 \times 78 \times 280$	$40 \times 78 \times 280$	$40 \times 86.3 \times 196.5$	$40 \times 86.3 \times 196.5$
Power Density	8.42	8.42	12.2	12.2
Cubic Inches	53.42	53.42	41.14	41.14
Pro-E Files	No	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes	Yes
Warranty	Two Years	Two Years	Two Years	Two Years
Ordering Codes				
Standard	DS450-3	DS450DC-3	DS495SPE-3	DS500SDC-3
ALT Standby	DS450-3-001			
Reverse Air	DS450-3-002	DS450DC-3-002	DS495SPE-3-001	DS500SDC-3-001

DS495SPE-3

DS500SDC-3

DISTRIBUTED AND CRPS POWER

Specifications			
	DS750PED-3	DS760SL-3	DS800SL-3
Input			
Input Range	90 to 264 VAC	90 to 264 VAC	90 to 264 VAC
Frequency	47 to 63 Hz	47 to 63 Hz	47 to 63 Hz
Efficiency	94\% Typ	90\% Typ	92\% Typ
EMI/RFI	Class A	Class A	Class B
Leakage Current	1.75 mA @ 240 V	0.8 mA @ 240 V	0.8 mA @ 240 V
Outputs			
Output Main	$12 \mathrm{~V} / 62.5 \mathrm{~A}$	$12 \mathrm{~V} / 62.3 \mathrm{~A}$	$12 \mathrm{~V} / 66.7 \mathrm{~A}$
Output Stand-By	$12 \mathrm{~V} / 3 \mathrm{~A}$	5.0 Vsb / 3.6 A	$5.0 \mathrm{Vsb} / 4 \mathrm{~A}$
OCP/OVP/OTP	Yes	Yes	Yes
$1^{2} \mathrm{C}$ Control	Yes	Yes	Yes
Environmental			
Operating Temp	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$
Derating	N/A	N/A	N/A
Storage	-40 to $+70^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
RoHS Compliant	Yes	Yes	Yes
MTBF	200K Hours	300K Hours	500 K Hours
Other			
Size (in)	$1.57 \times 3.39 \times 7.74$ in	$\begin{aligned} & 1.57 \times 2.15 \times \\ & 12.68 \text { in } \end{aligned}$	$\begin{aligned} & 1.57 \times 2.15 \times \\ & 12.68 \text { in } \end{aligned}$
Size (mm)	$41 \times 86.3 \times 196.5$	$40 \times 54.5 \times 322$	$40 \times 54.5 \times 322$
Power Density	18.23	17.76	18.69
Cubic Inches	41.14	42.8	42.8
Pro-E Files	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes
Warranty	Two Years	Two Years	Two Years
Ordering Codes			
Standard	DS750PED-3	DS760SL-3	DS800SL-3
ALT Standby			
Reverse Air	DS750PED-3-001	DS760SL-3-001	DS800SL-3-001
ALT Standby \& Reverse Air		DS760SL-3-003	

Specifications				
	DS1100PED-3	DS1100SDC-3	DS1100SLPE-3	DS1100TDC-3
Input				
Input Range	90 to 264 VAC	-36 to -72 VDC	90 to 264 VAC	-40 to -72 VDC
Frequency	47 to 63 Hz	N/A	47 to 63 Hz	N/A
Efficiency	94\% Typ	90\% Typ	94\% Typ	90\% Typ
EMI/RFI	Class A	Class A	Class A	Class A
Leakage Current	1.75 mA @ 240 V	N/A	1.75 mA	N/A
Outputs				
Output Main	$12 \mathrm{~V} / 91.67 \mathrm{~A}$	$12 \mathrm{~V} / 91.67 \mathrm{~A}$	$12 \mathrm{~V} / 90 \mathrm{~A}$	$12 \mathrm{~V} / 91.67 \mathrm{~A}$
Output Stand-By	$12 \mathrm{~V} / 3 \mathrm{~A}$	$12 \mathrm{~V} / 3 \mathrm{~A}$	$3.3 \mathrm{~V} / 3 \mathrm{~A}$	$3.3 \mathrm{~V} / 3 \mathrm{~A}$
OCP/OVP/OTP	Yes	Yes	Yes	Yes
$1^{2} \mathrm{C}$ Control	Yes	Yes	Yes	Yes
Environmental				
Operating Temp	0 to $50^{\circ} \mathrm{C}$			
Derating	N/A	N/A	60% at $65^{\circ} \mathrm{C}$	N/A
Storage	-40 to $+70^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$
RoHS Compliant	Yes	Yes	Yes	Yes
MTBF	200K Hours	> 200K Hours	300K Hours	> 300K Hours
Other				
Size (in)	$1.57 \times 3.39 \times 7.75$ in	$1.57 \times 3.39 \times 7.75$ in	$1.57 \times 2.15 \times 12.66$ in	$1.57 \times 2.14 \times 12.67$ in
Size (mm)	$42 \times 86.3 \times 196.5$	$42 \times 86.3 \times 196.5$	$40 \times 54.6 \times 321.56$	$40 \times 54.5 \times 322.0$
Power Density	26.74	26.7	25.7	25.8
Cubic Inches	41.14	41.14	42.73	42.57
Pro-E Files	Yes	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes	Yes
Warranty	Two Years	Two Years	Two Years	Two Years
Ordering Codes				
Standard	DS1100PED-3	DS1100SDC-3	DS1100SLPE-3	DS1100TDC-3
ALT Standby				
Reverse Air	DS1100PED-3-001	DS1100SDC-3-001	DS1100SLPE-3-001	DS1100TDC-3-001
ALT Standby \& Reverse Air				

DS1100PED-3

DS1100TDC-3

DISTRIBUTED AND CRPS POWER

Specifications			
	DS1600SPE-3	DS2000SPE-3	DS2400SPE-3
Input			
Input Range	180 to 264 VAC	90 to $140 \mathrm{VAC} / 180$ to 264 VAC	90 to $140 \mathrm{VAC} / 180$ to 264 VAC
Frequency	47 to 63 Hz	47 to 63 Hz	47 to 63 Hz
Efficiency	94\% Typ	94\% Typ Platinum	94\% Typ Platinum
EMI/RFI	Class A	Class A	Class A
Leakage Current	1.75 mA @ 240 V	0.75 mA	0.6 mA
Outputs			
Output Main	$12 \mathrm{~V} / 133.3 \mathrm{~A}^{1}$	$12 \mathrm{~V} / 163.9 \mathrm{~A}^{1}$	12.2 V / 196.7 A ${ }^{1}$
Output Stand-By	$12 \mathrm{~V} / 4.5 \mathrm{~A}$	$12 \mathrm{~V} / 3.5 \mathrm{~A}$	$12 \mathrm{~V} / 3.5 \mathrm{~A}$
OCP/OVP/OTP	Yes	Yes	Yes
${ }^{2}{ }^{2} \mathrm{C}$ Control	Yes	Yes	Yes
Environmental			
Operating Temp	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$
Derating	70% at $60^{\circ} \mathrm{C}$	N/A	70% at $60^{\circ} \mathrm{C}$
Storage	-40 to $+85^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$
RoHS Compliant	Yes	Yes	Yes
MTBF	200K Hours	> 500K Hours	500K Hours
Other			
Size (in)	$1.57 \times 3.39 \times 7.76$ in	$1.57 \times 3.39 \times 7.75$ in	$1.57 \times 3.39 \times 7.75$ in
Size (mm)	$40 \times 86.3 \times 196.5$	$40 \times 86.3 \times 196.5$	$40 \times 86.3 \times 196.5$
Power Density	38.89	48.6	58.2
Cubic Inches	41.14	41.14	41.14
Pro-E Files	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes
Warranty	Two Years	Two Years	Two Years
Ordering Codes			
Standard	DS1600SPE-3	DS2000SPE-3	DS2400SPE-3
ALT Standby			DS2400SPE-3-001
Reverse Air	DS1600SPE-3-001	DS2000SPE-3-001	
ALT Standby \& Reverse Air			

[^10]

DS2000SPE-3

DS2400SPE-3

Specifications		
	DS3000DC-3	DS3000TE-3
Input		
Input Range	-40 to -72 VDC	208 to 264 VAC
Frequency	N/A	47 to 63 Hz
Efficiency	90\% Typ	96\% Typ Titanium
EMI/RFI	Class A	Class A
Leakage Current	N/A	0.75 mA
Outputs		
Output Main	$12 \mathrm{~V} / 248 \mathrm{~A}$	$12 \mathrm{~V} / 250 \mathrm{~A}$
Output Stand-By	$12 \mathrm{~V} / 4.5 \mathrm{~A}$	$12 \mathrm{~V} / 4.5 \mathrm{~A}$
OCP/OVP/OTP	Yes	Yes
${ }^{2} \mathrm{C}$ C Control	Yes	Yes
Environmental		
Operating Temp	0 to $40^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$
Derating		25% at $50^{\circ} \mathrm{C}$
Storage	-40 to $70^{\circ} \mathrm{C}$	-40 to $85^{\circ} \mathrm{C}$
RoHS Compliant	Yes	Yes
MTBF	> 400K Hours	400K Hours
Other		
Size (in)	$4.15 \times 2.78 \times 11.8$ in	$4.15 \times 2.78 \times 11.12$ in
Size (mm)	$105.5 \times 70.6 \times 299.7$	$105.5 \times 70.6 \times 282.6$
Power Density	22.0	26.26
Cubic Inches	136	114.23
Pro-E Files	Yes	Yes
Thermal Data	Yes	Yes
PQ Airflow Curves	Yes	Yes
Warranty	Two Years	Two Years
Ordering Codes		
Standard	DS3000DC-3	DS3000TE-3
ALT Standby		
Reverse Air	DS3000DC-3-001	DS3000TE-3-001
ALT Standby \& Reverse Air		

DISTRIBUTED AND CRPS POWER

Specifications						
	CSU550AP-3	CSU800AP-3	CSU1300AP-3	CSU1800AP-3	CSU2000AP-3	CSU2400AP-3
Input						
Input Range	90 to 264 VAC					
Frequency	47 to 63 Hz					
Efficiency	94\% Typ Platinum					
EMI/RFI	Class A					
Leakage Current	0.85 mA	1.75 mA	1.75 mA	0.6 mA	0.6 mA	0.6 mA
Outputs						
Output Main	$12 \mathrm{~V} / 45.0 \mathrm{~A}$	$12 \mathrm{~V} / 66.7 \mathrm{~A}$	12.2 V / 108.3 A	12.2 V / 147.5 A	12.2 V / 163.9 A ${ }^{1}$	12.2 V / 196.7 A
Output Stand-By	$12 \mathrm{~V} / 2.5 \mathrm{~A}$	$12 \mathrm{~V} / 2.5 \mathrm{~A}$	$12 \mathrm{~V} / 3.5 \mathrm{~A}$			
OCP/OVP/OTP	Yes	Yes	Yes	Yes	Yes	Yes
${ }^{2} \mathrm{C}$ C Control	Yes	Yes	Yes	Yes	Yes	Yes
Environmental						
Operating Temp	0 to $50^{\circ} \mathrm{C}$	0 to $50^{\circ} \mathrm{C}$	0 to $55^{\circ} \mathrm{C}$			
Derating						
Storage	-40 to $70^{\circ} \mathrm{C}$	-40 to $60^{\circ} \mathrm{C}$	-40 to $70^{\circ} \mathrm{C}$			
RoHS Compliant	Yes	Yes	Yes	Yes	Yes	Yes
MTBF	> 250K Hours					
Other						
Size (in)	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \end{aligned}$	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \end{aligned}$	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \end{aligned}$	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.57 \times 2.89 \times \\ & 7.28 \text { in } \end{aligned}$
Size (mm)	$40 \times 73.5 \times 185$					
Power Density	16.7	16.7	40.6	56	62.6	75
Cubic Inches	33	33	33	33	33	33
Pro-E Files	Yes	Yes	Yes	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes	Yes	Yes	Yes
Warranty	Two years					
Ordering Codes						
Standard	CSU550AP-3	CSU800AP-3	CSU1300AP-3	CSU1800AP-3-100	$\begin{aligned} & \text { CSU2000AP-3-1002 } \\ & \text { CSU2000AP-3-2003 } \end{aligned}$	CSU2400AP-3-100
ALT Standby						
Reverse Air	CSU550AP-3-001	CSU800AP-3-001	CSU1300AP-3-001	CSU1800AP-3-111	$\begin{aligned} & \text { CSU2000AP-3-111 }{ }^{2} \\ & \text { CSU2000AP-3-211 }{ }^{3} \end{aligned}$	CSU2400AP-3-111
ALT Standby \& Reverse Air						

1 Low line derating will apply
2 IEC C14 AC inlet
3 IEC C20 AC inlet

CSU800AP-3

CSU2000AP-3

CSU2400AP-3

Specifications					
	CSU800ADC-3	CSU1300ADC-3	CSU2000ADC-3	CSU2400AT-3	CSU3200ET-3
Inputs					
Input Range	-40 to -72 VDC	-40 to -72 VDC	-40 to -72 VDC	180 to 264 VAC	180 to 264 VAC
Frequency	N/A	N/A	N/A	47 to 63 Hz	47 to 63 Hz
Efficiency	>90\% Typ	>90\% Typ	94\% Typ	96\% Typ Titanium	96\% Typ Titanium
EMI/RFI	Class A				
Leakage Current	N/A	N/A	N/A	0.6 mA	0.6 mA
Outputs					
Output Main	$12.2 \mathrm{~V} / 65.5 \mathrm{~A}$	12.2 V/106.5 A	$12.2 \mathrm{~V} / 163.9 \mathrm{~A}$	12.2V / 196.7 A	12.2V / 262.3 A
Output Stand-By	$12 \mathrm{~V} / 3.5 \mathrm{~A}$	$12 \mathrm{~V} / 3.5$ A			
OCP/OVP/OTP	Yes	Yes	Yes	Yes	Yes
$1^{2} \mathrm{C}$ Control	Yes	Yes	Yes	Yes	Yes
Environmental					
Operating Temp	-5 to $55^{\circ} \mathrm{C}$	-5 to $55^{\circ} \mathrm{C}$	-5 to $55^{\circ} \mathrm{C}$	0 to $55^{\circ} \mathrm{C}$	0 to $55^{\circ} \mathrm{C}$
Derating					
Storage	-40 to $70^{\circ} \mathrm{C}$				
RoHS Compliant	Yes	Yes	Yes	Yes	Yes
MTBF	>250K Hours	>250K Hours	>250K Hours	> 500k Hours	> 500k Hours
Other					
Size (inch)	$1.57 \times 2.89 \times 7.28$ in	$1.57 \times 2.89 \times 7.29$ in	$1.57 \times 2.89 \times 7.30$ in	$1.57 \times 2.89 \times 7.28$	$1.57 \times 2.89 \times 10.43$
Size (mm)	$40 \times 73.5 \times 185$	$41 \times 73.5 \times 185$	$42 \times 73.5 \times 185$	$40 \times 73.5 \times 185$	$40 \times 73.5 \times 265$
Power Density	16.7	40.6	62.6	75	68
Cubic Inches	33	33	33	33	47.3
Pro-E Files	Yes	Yes	Yes	Yes	Yes
Thermal Data	Yes	Yes	Yes	Yes	Yes
PQ Airflow Curves	Yes	Yes	Yes	Yes	Yes
Warranty	Two years				
Ordering Codes					
Standard	CSU800ADC-3-100	CSU1300ADC-3-100	CSU2000ADC-3-100	CSU2400AT-3-100	CSU3200ET-3-100
ALT Standby					
Reverse Air	TBD	TBD	CSU2000ADC-3-101		
ALT Standby \& Reverse Air					

50 V, 18 kW, 1OU Open Rack Power Shelf 15 kW N+1

SPECIAL FEATURES

- 15 kW at 50 V with $\mathrm{N}+1$ redundancy or 9 kW at 50 V with $\mathrm{N}+\mathrm{N}$ redundancy (dual feed shelf)
- Highly accurate droop + active current sharing
- Very high efficiency
- Accepts 3 types of input configurations (3P Delta $4 \mathrm{~W}, 3 \mathrm{P}$ Wye $5 \mathrm{~W}, 3 \mathrm{x}$ of 1 P)
- Black box fault recording

Total Output Power
18 kW

Safety

- UL 60950
- IEC 60950
- EN 62368-1
- EN 62368-1
- IEC 62368-1

| Electrical Specifications | | | |
| :--- | :--- | :--- | :--- | MIN \quad NOM \quad MAX

Compliance
EN 61000-4-2 Cat-A for surges
EN 61000-3-2 Class-A for harmonics
EN55022, FCC Part 15, CISPR 22, Class-A for EMC

Ordering Information Model	Description
$700-015746-0100$	Standard ORv3 Power Shelf - Single Whip
$700-015235-0100$	Standard ORv3 Power Shelf - Dual Whip

Related Products	
Model	Description
700-015234-0100	Standard ORv3 PSU
700-015798-0000	Standard ORv3 Power Management Controller
700-015718-0000	Standard ORv3 PMI

1 Max Current Step: 10\% to 50\%, 50\% to 10\%
2 Slew Rate: 1A/uS

50 V, 3 kW, Open Rack Rectifier

For 18 kW \& 36 kW Open Rack V3 Power Shelves

Total Output Power

3 kW

Safety

- UL 60950
- IEC 60950
- IEC 62368-1
- UL62368-1
- EN62368-1

SPECIAL FEATURES

- Greater than 96.5\% efficiency from 240 to 277 V AC input with $30-100 \%$ load (peak efficiency of 97.5%)
- 200 to 277 VAC input
- Active to active + droop current sharing
- OCP compliant
- Hot pluggable PSUs
- Status LEDs for fault monitoring
- 48 V fixed on battery test operation

Electrical Specifications			
	MIN	NOM	MAX
Input			
Voltage VAC	180	200/277	305
Hold up (@100\% Load 200 to 277 VAC) msec		20	
iTHD (Load >30\%) \%			5
Power Factor (10 to 30\% loading) \%	95		
Power Factor (30 to 100\% loading) \%	97		
Power Factor (above 50\% loading) \%	98		
Output			
Set Point VDC (50\% Load)	50.625	50.75	50.875
Battery Testing Voltage (V)		48	
Current A	0		60
Ripple \& Noise (@ 20MHz BW) mVpp			500
Output Excursion (from nominal voltage) During Transient Loading $\mathrm{mV}^{1,2,3}$	-1		+1

Compliance

ICE EN 61000-4-2 Cat-A for surges
EN 61000-3-2 Class-A for harmonics
CISPR and FCC Part A for EMC

Related Products	Description
Model	Standard ORv3 Power Shelf - Single Whip
$700-015746-0100$	Standard ORv3 Power Shelf - Dual Whip
$700-015235-0100$	Standard ORv3 Power Management Controller
$700-015798-0000$	Standard ORv3 PMI
$700-015718-0000$	

48 V, 30 kW, 2U EIA Power Shelf 30 kW N+2

Total Output Power

30 kW N+2

Safety

- EN 62368-1
- UL 62368-1
- IEC 62368-1

SPECIAL FEATURES

- $30 \mathrm{~kW} \mathrm{~N}+2$ at 48 V with active + droop current sharing
- Houses $12 \times 3 \mathrm{~kW}$ power modules and a removable shelf controller
- Designed for dual AC feeds, Automatic Transfer Switch (ATS) PSUs
- Very high efficiency
- Accepts 3 types of input configurations (3P Delta 4 W, 3P Wye $5 \mathrm{~W}, 3 \mathrm{x}$ of 1P)

Electrical Specifications			MIN
Input	NOM	MAX	
Voltage (3 phase Delta 4 Wire) VAC	180	$200 / 277$	305
Voltage (3 phase Wye 5 Wire) VAC	360	$380 / 480$	528
Voltage (3x of 1 phase) VAC	180	$200 / 277$	305
Output	49.65 V	49.7 V	49.75 V
Set Point VDC (20\% load)		-1.5 V	
Droop (0~100\% load)			620
Current A			500
Ripple \& Noise (@ 20MHz BW) mVpp	-1	+1	
Output Excursion (from Nominal voltage) During Transient Loading V¹, 2,3	-1		

Compliance

EN61000-4-5 Level 3 for AC Mains Surge
EN55035

Ordering Information Part \#	Description
$700-15496-0000$	19" 2RU 30KW Power Shelf
$700-15485-0000$	48 V 3 KW ATS Power Supply
$700-15499-0000$	Shelf Management Controller

[^11]
48 V, 3 kW, EIA Rectifier with ATS

SPECIAL FEATURES

- Greater than 96\% efficiency from 240 to 277 V AC input with 30 to 100% load (peak efficiency of 97%)
- Automatic Transfer Switch (ATS) built in
- 68 mm wide
- $1^{2} \mathrm{C}$ monitoring and control
- > 24 msec hold up
- 200 to 277 VAC input
- Active current sharing
- OCP compliant
- Hot pluggable PSUs
- Status LEDs for fault monitoring
- 30 kW N+2

| Electrical Specifications | | MIN | NOM |
| :--- | :--- | :--- | :--- | MAX

Compliance

EN61000-4-5 Level 3 for AC Mains Surge
EN55035

Ordering Information Part \#	Description
$700-15496-0000$	19 " 2 RU 30KW Power Shelf
$700-15485-0000$	48 V 3 KW ATS Power Supply
$700-15499-0000$	Shelf Management Controller

[^12]
DIN RAIL

ADN-C Series Single Phase

120 to 960 W

SPECIALFEATURES

- Slim form factor
- Five year warranty
- High efficiency > 90\% typical
- Full power at $60^{\circ} \mathrm{C}$
- PowerBoost technology
- Industrial grade design
- Metal mounting clip
- Metal case
- MTBF $>450,000 \mathrm{~h}$ demonstrated at $40^{\circ} \mathrm{C}$
- Active PFC > 0.92
- Adjustable output
- Over-voltage protection with auto recovery
- Continuous short-circuit and over-load protection
- SEMI F47 Sag Immunity
- New visual diagnostic LED
- Three Status LEDs - Input, Output, Alarm
- DC OK Relay
- Parallel operation capability
- Screw terminal connections
- RoHS compliant
- No tools required for mounting

Electrical Specifications
Input
AC Input Range
DC Input Range
Nominal: 115 to 230 VAC
85 to 264 VAC
:---
Frequency
Efficiency
Inrush Current
PFC

Electrical Specifications Output	
Nominal Voltage	ADN5-24-1PM-C \& ADN10-24-1PM-C: 24 VDC (22.5 to 28.5 VDC Adj) ADN20-24-1PM-C: 24 VDC (24 to 28 VDC Adj)
Initial Voltage Setting	$24.5 \mathrm{~V} \pm 1 \%$
Hold-up Time	> 20 ms @ full load (100 VAC Input @ $\left.\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}\right)$
Voltage Regulation	< $\pm 2 \%$ (combination line, load, time and temperature related changes)
Ripple	ADN5-24-1PM-C \& ADN10-24-1PM-C: < 50 mVpp ADN20-24-1PM-C: < 100 mVpp
Back EMF Immunity	< 35 VDC
PowerBoost	1.5x Nominal current for 4 seconds
Short-circuit Current	1.5x Nominal current @ near zero volts at short-circuit condition
Parallel Operation	Switch selectable single unit or parallel unit operation. Units will Not be damaged by parallel operation (regardless of switch position setting)
Output Noise Suppression	Radiated EMI values below EN61000-6-2
Over-Voltage Protection	> 30.5 VDC but < 33 VDC, auto recovery
Line and Load Regulation	< 0.5\%
Time and Temperature Drift	< 1\%

Ordering Information						
Power	Voltage		Current	Size L x W x H		Model Number
	VAC	VDC		in	mm	
120 W	85 to 264 VAC	90 to 375 VDC	5 A	$4.85 \times 1.97 \times 4.37$ in	$123 \times 50 \times 111$	ADN5-24-1PM-C
240 W	85 to 264 VAC	90 to 375 VDC	10 A	$4.85 \times 2.36 \times 4.37$ in	$123 \times 60 \times 111$	ADN10-24-1PM-C
480 W	85 to 264 VAC	90 to 375 VDC	20 A	$4.85 \times 3.42 \times 4.96$ in	$123 \times 87 \times 126$	ADN20-24-1PM-C
960 W	85 to 264 VAC	90 to 375 VDC	40 A	$4.81 \times 7.09 \times 4.85$ in	$122.2 \times 180 \times 123.3$	ADN40-24-1PM-C

ADN-C Series
 3-Phase

120 to 960 W

SPECIAL FEATURES

- Slim form factor
- Five year warranty
- High efficiency > 93\% typical
- Full power at $60^{\circ} \mathrm{C}$
- PowerBoost technology
- Industrial grade design - metal cases
- MTBF $>450,000 \mathrm{~h}$ demonstrated at $40^{\circ} \mathrm{C}$
- Active PFC
- Adjustable output
- Over-voltage protection with auto recovery
- Continuous short-circuit and over-load protection

Electrical Specificatio Input	
Nominal Voltage	380 to 480 VAC
AC Input Range	320 to 540 VAC
DC Input Range	450 to 720 VDC for ADN20
Frequency	50 to 60 Hz
Efficiency	93\% for ADN20; 94\% for ADN40
PFC	Active power factor correction
Two Phase Input	Derate to 75% and 50% for ADN20 and ADN40 respectively under loss of 1 phase. Units will shut down if thermal threshold is exceeded under this condition
Output	
Nominal Voltage	24 V (24.0 to 28.0 VDC Adj.)
Hold-up Time	> 20 ms for ADN20; > 15 ms for ADN40
Voltage Regulation	< $\pm 2 \%$ overall
Ripple	< 100 mVpp
PowerBoost	$1.5 \times$ Nominal current for 4 seconds
Peak Current	$1.5 \times$ Nominal current for 4 seconds minimum while holding voltage > 20 VDC
Parallel Operation	Single or parallel operation selectable via front switch. For redundant operation use of external diode module is preferred; ADN40 uses active paralleling
Power Back Immunity	> 35 V
Over-voltage Protection	> 30.5 VDC but < 33 VDC , auto recovery

Ordering Information						
Power	Voltage		Current	Size Lx W x H		Model Number
	VAC	VDC		in	mm	
120 W	320 to 540 VAC	450 to 760 VDC	5 A @ 24 VDC	$4.85 \times 1.97 \times 4.37$ in	$123 \times 50 \times 111$	ADN5-24-3PM-C
240 W	320 to 540 VAC	450 to 760 VDC	10 A @ 24 VDC	$4.85 \times 2.36 \times 4.37$ in	$123 \times 60 \times 111$	ADN10-24-3PM-C
480 W	320 to 540 VAC	450 to 760 VDC	20 A @ 24 VDC	$4.68 \times 3.34 \times 4.85$ in	$119 \times 85 \times 123$	ADN20-24-3PM-C
960 W	320 to 540 VAC	90 to 375 VDC	40 A @ 24 VDC	$4.85 \times 7.09 \times 4.85$ in	$123 \times 180 \times 123$	ADN40-24-3PM-C

4F

DC-DC Converters

As an industry leader in distributed power supplies, Advanced Energy provides an exceptionally wide range of DC-DC power conversion solutions

Distributed Power Architecture

Advanced Energy understands the needs and nuances of developing power systems using distributed power architecture. We know it is your job to create the most efficient, cost-effective, quality system, and deliver it in a timely fashion.

From full-system power to board-level components, high-power isolated front ends to a full line of isolated and non-isolated DC-DC modules, Advanced Energy is the source for today's power systems.

Distributed Power Architecture DC-DC Conversion

AC-DC

INDUSTRY STANDARD ISOLATED

Quarter-Brick

SPECIALFEATURES

- Industry leading quarter-brick standard package and feature sets
- Up to 100 A offering
- Wide operating temperature range
- Meets basic insulation
- PMBus ${ }^{\text {TM }}$ interface
- Exceptional dynamic response and reactive loading capability

- Monotonic start-up characteristic
- International safety standards approvals - UL, CSA, TÜV

Ordering Information					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
3.3 V	Open-frame				
	40 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.39$ in $(57.9 \times 36.8 \times 9.8)$	91\%	AGQ200B-48S3V3-4L
	Baseplate				
	40 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.50$ in $(57.9 \times 36.8 \times 12.7)$	91\%	AGQ200B-48S3V3B-4L
5 V	Open-frame				
	20 A	24 V (18 to 36 V)	$2.28 \times 1.45 \times 0.39$ in $(57.9 \times 36.8 \times 9.8)$	91\%	AVQ100-24S05-4L
	Baseplate				
	20 A	24 V (18 to 36 V)	$2.28 \times 1.45 \times 0.50$ in $(57.9 \times 36.8 \times 12.7)$	91\%	AVQ100-24S05B-4L
10 V	Open-frame				
	60 A	48 V (40 to 60 V$)$	$2.28 \times 1.45 \times 0.43$ in $(57.9 \times 36.8 \times 11)$	95\%	ADQ600-48S10-6L
	Baseplate				
	60 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.28 \times 1.45 \times 0.52$ in $(57.9 \times 36.8 \times 13.3)$	95\%	ADQ600-48S10B-6L
12 V	Open-frame				
	25 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.36$ in $(57.9 \times 36.8 \times 9.6)$	94\%	AVQ300-48S12-6L
	33 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.36$ in $(57.9 \times 36.8 \times 9.6)$	93\%	AVQ400-48S12-6L
	42 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.43$ in $(57.9 \times 36.8 \times 11)$	95\%	ADQ500-48S12-6L
	50 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.28 \times 1.45 \times 0.43$ in $(57.9 \times 36.8 \times 11)$	95\%	ADQ600-48S12-6L
	58 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.43$ in $(58.4 \times 36.8 \times 11)$	96\%	ADQ700-48S12-4L
	58 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.43$ in $(58.4 \times 36.8 \times 11)$	96\%	ADQ700-48S12-4LI
	Baseplate				
	25 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.50$ in $(57.9 \times 36.8 \times 12.7)$	94\%	AVQ300-48S12B-4L
	33 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.50$ in $(57.9 \times 36.8 \times 12.7)$	93\%	AVQ400-48S12B-6L
	42 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.43$ in $(57.9 \times 36.8 \times 11)$	95\%	ADQ500-48S12B-6L
	50 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.28 \times 1.45 \times 0.52$ in $(57.9 \times 36.8 \times 13.3)$	95\%	ADQ600-48S12B-6L
	50 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.28 \times 1.45 \times 0.43$ in $(57.9 \times 36.8 \times 11)$	95.5\%	ADQ600B-48S12B-6L/K
	58 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.52$ in $(58.4 \times 36.8 \times 13.6)$	96\%	ADQ700-48S12B-4L
	58 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.52$ in $(58.4 \times 36.8 \times 13.6)$	96\%	ADQ700-48S12B-4LI
	70 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.53$ in $(58.4 \times 36.8 \times 13.6)$	96\%	ADQ800-48S12B-4L
	90 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.57$ in $(58.4 \times 36.8 \times 14.5)$	97.7\%	BCQ1300-48S12B-4L
	90 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.57$ in $(58.4 \times 36.8 \times 14.5)$	97.5\%	BDQ1300-48S12B-4L
	90 A	$48 \mathrm{~V}(40$ to 60 V$)$	$2.3 \times 1.4 \times 0.57$ in $(58.4 \times 36.8 \times 14.5)$	97.5\%	BDQ1300-48S12B-4LI

Eighth-Brick

SPECIAL FEATURES

- Industry leading eighth-brick standard package and feature sets
- Scalable output power offering: Low power 80 W series or up to 300 W high power series
- Mechanical options for optimum mounting flexibility: Open-frame (ALO, LES, AVO) or baseplate (AEO or AVO-B) construction; Through-hole (default) or surface mount (suffix "-S") termination; 5 mm (default) or 3.7 mm throughhole pin length option
- PMBus ${ }^{\top M}$ interface
- Meets basic insulation
- Power densities as high as 181 W per in ${ }^{3}$
- Wide operating temperature range
- International safety standards approvals - UL, CSA, TÜV

Ordering Information					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
1.2 V	Open-frame				
	20 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	86\%	AVO50-48S1V2-4
	25 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	86\%	AVO75-48S1V2-4
	Baseplate				
	50 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in ($57.9 \times 22.9 \times 12.7)$	85.5\%	AVO100-48S1V2B-6L
3.3 V	Open-frame				
	15 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	90\%	AVO50C-48S3V3-6
	20 A	$\begin{aligned} & 24 \mathrm{~V} / 48 \mathrm{~V} \\ & (19 \text { to } 60 \mathrm{~V}) \end{aligned}$	$2.3 \times 0.9 \times 0.32$ in ($57.9 \times 22.9 \times 8.13$)	91\%	ALO20F36N-L
	20 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO75-48S3V3-4
	30 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO100B-48S3V3-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in $(58.4 \times 22.9 \times 11.2)$	93.5\%	ADO300-48S3V3-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in $(58.4 \times 22.9 \times 11.2)$	93.5\%	ADO300-48S3V3-6LI
	Baseplate				
	30 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.4$ in ($57.9 \times 22.9 \times 10.16$)	91\%	AVO100C-48S3V3B-4L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in $(58.4 \times 22.9 \times 13.5)$	93.5\%	ADO300-48S3V3B-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in ($58.4 \times 22.9 \times 13.5$)	93.5\%	ADO300-48S3V3B-6LI

INDUSTRY STANDARD ISOLATED

Ordering Information					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
5 V	Open-frame				
	10 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO50-48S05-4
	15 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO75-48S05-6
	20 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	92.8\%	AVO100-48S05-6L
	40 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	94\%	AVO200-48S05-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in $(58.4 \times 22.9 \times 11.2)$	95\%	ADO300-48S05-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in ($58.4 \times 22.9 \times 11.2$)	95\%	ADO300-48S05-6LI
	Baseplate				
	20 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	92.8\%	AVO100-48S05B-6L
	40 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	94\%	AVO200-48S05B-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in $(58.4 \times 22.9 \times 13.5)$	95\%	ADO300-48S05B-6L
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in $(58.4 \times 22.9 \times 13.5)$	95\%	ADO300-48S05B-6LI
	60 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in ($58.4 \times 22.9 \times 13.5$)	95\%	ADO300-48S05PB-6L
10.1 V	Baseplate				
	50 A	$48 \mathrm{~V}(45$ to 56 V$)$	$2.3 \times 0.91 \times 0.48$ in $(58.4 \times 23.2 \times 12.2)$	96.5\%	ADO500-48S10-4L
	55 A	48 V (45 to 56 V)	$2.3 \times 0.91 \times 0.57$ in ($58.4 \times 23.2 \times 14.5$)	96.5\%	ADO550-48S10B-4L
12 V	Open-frame				
	4.2 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO50-48S12-6L
	6.3 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	91\%	AVO75-48S12P-4
	10 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	93\%	AVO120-48S12-6L
	17 A	$48 \mathrm{~V}(36$ to 75 V$)$	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	94\%	AVO200-48S12-6L
	20 A	48 V (41 to 75 V)	$2.3 \times 0.9 \times 0.38$ in $(57.9 \times 22.9 \times 9.6)$	94\%	AVO240-48S12-6L
	26 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in $(57.9 \times 22.9 \times 11.2)$	95\%	ADO300-48S12-6L
	26 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.44$ in ($57.9 \times 22.9 \times 11.2$)	95\%	ADO300-48S12-6LI
	Baseplate				
	4 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.4$ in $(57.9 \times 22.9 \times 10.16)$	93\%	AEO04B48N-L
	10 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	93\%	AVO120-48S12B-6L
	17 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	94\%	AVO200-48S12B-6L
	20 A	48 V (41 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	94\%	AVO240-48S12B-6L
	26 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in $(57.9 \times 22.9 \times 13.5)$	95\%	ADO300-48S12B-6L
	26 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.53$ in $(57.9 \times 22.9 \times 13.5)$	95\%	ADO300-48S12B-6LI

Sixteenth-Brick

SPECIAL FEATURES

- Industry leading sixteenthbrick standard package and feature sets
- Scalable offering: $35 \mathrm{~W}, 50$ $\mathrm{W}, 75 \mathrm{~W}, 85 \mathrm{~W}$ and 120 W platforms
- Mechanical options for optimum mounting flexibility: Through-hole (default) or surface mount (suffix "-S") termination; 5 mm (default) or 3.7 mm through-hole pin length option
- Meets basic insulation
- Power densities as high as 146.5 W per in ${ }^{3}$
- International safety standards approvals - UL, CSA, TÜV

Ordering Information

Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
1.2 V	Open-frame				
	15 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.35$ in $(33 \times 22.9 \times 8.89)$	84\%	ALD15K48N-L
	25 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.34$ in $(33 \times 22.9 \times 8.5)$	84\%	AVD75-48S1V2-6L
	Baseplate				
	25 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	84\%	AVD75-48S1V2B-6L
3.3 V	Open-frame				
	15 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.5)$	91\%	AVD50B-48S3V3-6L
	20 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD75-48S3V3-6L
	23 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	91.5\%	AVD75B-48S3V3-6L
	25 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD85-48S3V3-6L
	Baseplate				
	15 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	92\%	AVD50B-48S3V3B-6L
	20 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD75-48S3V3B-6L
	23 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	91.5\%	AVD75B-48S3V3B-6L
	25 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD85-48S3V3B-6L
	SMT pin with reel tape package				
	15 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	92\%	AVD50B-48S3V3TL
	23 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	91.5\%	AVD75B-48S3V3TL

INDUSTRY STANDARD ISOLATED

Ordering Information					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
5 V	Open-frame				
	7 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.35$ in $(33 \times 22.9 \times 8.89)$	91\%	ALD07A48N-L
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	91.5\%	AVD50B-48S05-6L
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.5)$	92\%	AVD50-48S05-6L
	15 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	91.5\%	AVD75B-48S05-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	91.5\%	AVD85B-48S05-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD85-48S05-6L
	20 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD100-48S05-6L
	Baseplate				
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	91.5\%	AVD50B-48S05B-6L
	15 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	91.5\%	AVD75B-48S05B-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	91.5\%	AVD85B-48S05B-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD85-48S05B-6L
	20 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD100-48S05B-6L
	SMT pin with reel tape package				
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	91.5\%	AVD50B-48S05TL
	15 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	91.5\%	AVD75B-48S05TL
	17 A	48 V (36 to 75 V)	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	91.5\%	AVD85B-48S05TL
12 V	Open-frame				
	2.75 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.35$ in $(33 \times 22.9 \times 8.89)$	92\%	ALD03B48N-L
	4.17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	93\%	AVD50B-48S12-6L
	6.25 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	93.3\%	AVD75B-48S12-6L
	7 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD85-48S12-6L
	7.1 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.36$ in $(33 \times 22.9 \times 9.2)$	93.3\%	AVD85B-48S12-6L
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.39$ in $(33 \times 22.9 \times 10)$	92\%	AVD120-48S12-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.43$ in $(33 \times 22.9 \times 10.9)$	94.2\%	AVD200-48S12-6L
	Baseplate				
	4.17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	93\%	AVD50B-48S12B-6L
	6.25 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	93.3\%	AVD75B-48S12B-6L
	7 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD85-48S12B-6L
	7.1 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.47$ in $(33 \times 22.9 \times 12)$	93.3\%	AVD85B-48S12B-6L
	10 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	92\%	AVD120-48S12B-6L
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.5$ in $(33 \times 22.9 \times 12.7)$	94.2\%	AVD200-48S12B-6L
	SMT pin with reel tape package				
	4.17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	93\%	AVD50B-48S12TL
	6.25 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	93.3\%	AVD75B-48S12TL
	7.1 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.37$ in $(33 \times 22.9 \times 9.4)$	93.3\%	AVD85B-48S12TL
	17 A	48 V (36 to 75 V$)$	$1.3 \times 0.9 \times 0.43$ in $(33 \times 22.9 \times 10.9)$	94.2\%	AVD200-48S12TL

Radio Frequency Power Modules

SPECIAL FEATURES

- Specialized high power bricks for RF applications such as base station power amplifiers
- Offered in 24 V and 48 V input voltages
- Wide output voltage adjustability
- -40 to $85^{\circ} \mathrm{C}$ for AVE, AGF baseplate temperature with No derating at rated power
- International safety standard approvals UL, CSA, VDE, CB Report

Eight-Brick					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
28 V	Open-Frame				
	3.57 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.39$ in (57.9 $\times 22.9 \times 9.6$)	92\%	AVO100-48S28-6L
	Baseplate				
	3.57 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	92\%	AVO100-48S28B-6L
	9 A	48 V (36 to 75 V)	$2.3 \times 0.9 \times 0.5$ in $(57.9 \times 22.9 \times 12.7)$	93\%	AVO250-48S28B-6L
Quarter-Brick					
Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
50 V	Baseplate				
	10 A	48 V (36 to 75 V)	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	94\%	AGQ500-48S50-6L
	10 A	48 V (36 to 75 V)	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	94\%	AGQ500-48S50P-6L
Half-Brick					
Vout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
28 V	Aluminum Substrate				
	12.5 A	24 V (18 to 36 V)	$2.4 \times 2.3 \times 0.5$ in $(61 \times 57.9 \times 12.7)$	93\%	AVE350-24S28-6L
	12.5 A	48 V (36 to 75 V)	$2.4 \times 2.3 \times 0.5$ in $(61 \times 57.9 \times 12.7)$	93\%	AVE350B-48S28-6
	16 A	48 V (36 to 75 V)	$2.4 \times 2.3 \times 0.5$ in $(61 \times 57.9 \times 12.7)$	94\%	AVE450B-48S28-6L/M
	25 A	48 V (36 to 65 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	ADH700-48S28-6L
	25 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	ADH700-48S28-6LS
	25 A	$48 \mathrm{~V}(36$ to 65 V$)$	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	ADH700-48S28P-6L
	25 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in ($57.9 \times 61 \times 12.7)$	95\%	ADH700-48S28P-6LS
	Baseplate				
	25 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95.5\%	AVE700-48S28B-6L
	25 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95.5\%	AVE700-48S28PB-6L
50 V	9 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	AVE450-48S50-6L
	9 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	AVE450-48S50P-6L
	10 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	AVE500-48S50-6L
	10 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	AVE500-48S50P-6L
	14 A	48 V (36 to 65 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	ADH700-48S50-6L
	14 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in $(57.9 \times 61 \times 12.7)$	95\%	ADH700-48S50-6LS
	14 A	48 V (36 to 65 V)	$2.3 \times 2.4 \times 0.5$ in ($57.9 \times 61 \times 12.7)$	95\%	ADH700-48S50P-6L
	14 A	48 V (36 to 75 V)	$2.3 \times 2.4 \times 0.5$ in (57.9 $\times 61 \times 12.7$)	95\%	ADH700-48S50P-6LS
Full-Brick					
Vout	Iout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
28 V	Aluminum Substrate				
	21.5 A	24 V (18 to 36 V)	$4.6 \times 2.4 \times 0.5$ in (116.8 $\times 61 \times 12.7)$	93\%	AGF600-24S28-6L
	21.5 A	48 V (36 to 75 V)	$4.6 \times 2.4 \times 0.5$ in $(116.8 \times 61 \times 12.7)$	93.5\%	AGF600-48S28-6L
	25 A	48 V (36 to 75 V)	$4.6 \times 2.4 \times 0.5$ in $(116.8 \times 61 \times 12.7)$	93\%	AGF700-48S30LT
	28.5 A	48 V (36 to 75 V)	$4.6 \times 2.4 \times 0.5$ in $(116.8 \times 61 \times 12.7)$	94\%	AGF800-48S28-6L
48 V	16 A	50 V (36 to 75 V)	$4.6 \times 2.4 \times 0.5$ in $(116.8 \times 61 \times 12.7)$	94.5\%	AGF800-48S48P-6L
$30 \mathrm{~V} / 5 \mathrm{~V}$	23.3 A / 20 A	48 V (36 to 75 V)	$4.6 \times 2.4 \times 0.5$ in $(116.8 \times 61 \times 12.7)$	93.5\%	AGF800-48D3005-6L

Wide Input Voltage Series

SPECIAL FEATURES

- Wide input voltage range to cover 24 V and 48 V input
- Industry standard brick package
- Open-frame and baseplate construction
- Wide operating temperature

Ordering Information							
		Vout	lout	Input Voltage	Efficiency	Package L x W x H (mm)	Model Number
Quarter Brick	Baseplate	3.3 V	25 A	$24 \mathrm{~V}, 48 \mathrm{~V}$ (18 to 60 V$)$	90\% @ 48 vin, 92\% @ 24 vin	$\begin{aligned} & 2.28 \times 1.45 \times 0.40 \text { in } \\ & (57.9 \times 36.8 \times 10.2) \end{aligned}$	AVQ100-36S3V3B-6L
Quarter Brick	Baseplate	12 V	19 A	$24 \mathrm{~V}, 48 \mathrm{~V}$ (18 to 75 V$)$	94\%	$\begin{aligned} & 2.28 \times 1.45 \times 0.50 \mathrm{in} \\ & (57.9 \times 36.8 \times 12.7) \\ & \hline \end{aligned}$	AVQ200-36S12B-6L
Quarter Brick	Open-frame	3.3 V	25 A	$24 \mathrm{~V}, 48 \mathrm{~V}$ (18 to 60 V)	90\% @ 48 vin, 92\% @ 24 vin	$\begin{aligned} & 2.28 \times 1.45 \times 0.40 \mathrm{in} \\ & (57.9 \times 36.8 \times 10.2) \end{aligned}$	AVQ100-36S3V3-6L
Quarter Brick	Open-frame	12 V	19 A	$24 \mathrm{~V}, 48 \mathrm{~V}$ (18 to 75 V$)$	94\%	$\begin{aligned} & 2.28 \times 1.45 \times 0.38 \text { in } \\ & (57.9 \times 36.8 \times 9.6) \end{aligned}$	AVQ200-36S12-6L

Direct Conversion - Power Stamp Alliance Series

SPECIAL FEATURES

- 100 A peak current
- PSA compliant
- Up to 93% efficient
- Low ripple and Noise
- Data center 48 VDC input range
- Open frame optimized for air cooling
- Surface mount termination
- Fixed switching frequency
- High capacitive load capability
- Pre-bias start-up capability
- High reliability
- RoHS 3.0 compliant
- UL94 V-0 materials

Ordering Information					
Input Voltage	Vout	lout	Efficiency	Package L x W x H (mm)	Model Number
40 to 60 VDC	$5 \mathrm{~V} / \mathrm{Vdd} \& 5 \mathrm{~V} / \mathrm{Vcc}$	0.5 A / 2 A		$1.18 \times 0.5 \times 0.415$ in $(20.8 \times 12.7 \times 10.55)$	ADC100C
40 to 60 VDC	1.6 to 2.0 V	100 A	92\%	$1.18 \times 0.5 \times 0.67$ in $(30 \times 12.7 \times 17)$	ADC100M-04Y
40 to 60 VDC	1.6 to 2.0 V	100 A	92\%	$1.18 \times 0.5 \times 0.59$ in $(30 \times 12.7 \times 15)$	ADC100S-04Y
40 to 60 VDC	0.8 to 1.1 V	120 A	91\%	$1.18 \times 0.5 \times 0.67$ in $(30 \times 12.7 \times 17)$	ADC100M-04J
40 to 60 VDC	0.8 to 1.1 V	120 A	91\%	$1.18 \times 0.5 \times 0.59$ in $(30 \times 12.7 \times 15)$	ADC100S-04J

C-Class - High Density

Non-Isolated DC-DC Converters

The second generation C-class non-isolated DC-DC converters are designed to provide good efficiency and performance, a smaller footprint, and integrated input and output capacitors.

SPECIAL FEATURES

■ Wide input voltage ranges: 3 to 13.8 V or 4.5 to 13.8 V

- Wide output voltage trim/adjustability: 0.59 to 5.1 V
- Output current: 3 to 40 A
- High efficiency up to 94%
- Remote sense (Sxx20C2, Sxx40C2 and Sxx60C2)
- Operating temperature range for LDO03, LDO06, LDO10: -40 to $85^{\circ} \mathrm{C}$.
- Operating temperature range for SIL/ SMT20C2, SIL/SMT40C2 and SIL60C2: 0 to $70^{\circ} \mathrm{C}$
- Cost-optimized design - industry leading value
- Compact footprint, vertical, horizontal and horizontal SMT options
- International safety standard approvals UL, CSA, TÜV \& CB Report

Ordering Information					
Output Current	Input Voltage	Output Voltage	Efficiency	Package L x W x H (mm)	Model Number
Single-In-Line, Through-Hole Mounting					
3 A	3.0 to 13.8 VDC	0.59 to 5.1 V	90\%	$0.37 \times 0.21 \times 0.61$ in $(9.4 \times 5.33 \times 15.49)$	LD003C-005W05-VJ
6 A	3.0 to 13.8 VDC	0.59 to 5.1 V	92\%	$0.41 \times 0.37 \times 0.65$ in ($10.41 \times 9.4 \times 16.51$)	LDO06C-005W05-VJ
10 A	3.0 to 13.8 VDC	0.59 to 5.1 V	94\%	$0.41 \times 0.45 \times 0.65$ in ($10.41 \times 11.43 \times 16.51$)	LDO10C-005W05-VJ
20 A	4.5 to 13.8 VDC	0.59 to 5.1 V	93\%	$1.2 \times 0.46 \times 0.61$ in $(30.48 \times 11.68 \times 15.49)$	SIL20C2-00SADJ-VJ
40 A	4.5 to 13.8 VDC	0.6 to 5.0 V	94\%	$1.2 \times 0.43 \times 1.1$ in ($30.48 \times 10.92 \times 27.94$)	SIL40C2-00SADJ-VJ
60 A	10.8 to 13.2 VDC	1.2 to 4.0 V	89\%	$1.98 \times 0.54 \times 0.78$ in ($50.29 \times 13.72 \times 19.81$)	SIL60C2-00SADJ-VDJ
Surface-Mounting					
3 A	3.0 to 13.8 VDC	0.59 to 5.1 V	90\%	$0.61 \times 0.37 \times 0.29$ in ($15.49 \times 9.4 \times 7.37)$	LDO03C-005W05-SJ
6 A	3.0 to 13.8 VDC	0.59 to 5.1 V	92\%	$0.65 \times 0.41 \times 0.44$ in $(16.51 \times 10.41 \times 11.18)$	LDO06C-005W05-SJ
10 A	3.0 to 13.8 VDC	0.59 to 5.1 V	94\%	$0.65 \times 0.41 \times 0.52$ in ($16.51 \times 10.41 \times 13.21$)	LDO10C-005W05-SJ
20 A	4.5 to 13.8 VDC	0.59 to 5.1 V	93\%	$1.2 \times 0.61 \times 0.48$ in $(30.48 \times 15.49 \times 12.19)$	SMT20C2-00SADJJ
40 A	4.5 to 13.8 VDC	0.6 to 5.0 V	94\%	$1.2 \times 1.1 \times 0.44$ in ($30.48 \times 27.94 \times 11.18$)	SMT40C2-00SADJJ

LGA Series

Dual Output Non-Isolated Digital DC-DC Converter

LGA80D

LGA110D

SPECIAL FEATURES

- Two-phase design
- Dual or single output configuration possible
- High efficiency up to 95.5%
- Small size $1^{\prime \prime} \times 0.5^{\prime \prime} \times 0.48^{\prime \prime}$ ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)
- Support PMBus
- No minimum load requirement
- Wide operating temperature range
- Exceptional power density
- Automatic loop compensation
- Excellent transient response
- Analog or digital control
- IPC9592B compliant

Ordering Information					
Output current	Input voltage	Output voltage	Efficiency	Package L \times W x H (mm)	Model number
Total current 50A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Total current 50A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41$ in $(25.4 \times 12.7 \times 10.6)$	LGA50D-01DADJSBJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJSBJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJSBJ
Total current 50A	7.5 to 14 VDC	0.6 to 3.3V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 3.3 V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 3.3V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Total current 80A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Channel 1; 40A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Channel 2; 40A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Total output 110A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52$ in $(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ
Channel 1; 55A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52$ in $(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ
Channel 2; 55A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52$ in $(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ

C-Class - High Density LGA C Series

The latest addition to the c-class non-isolated DC-DC converter offering packaged in an ultra-compact, low-profile land grid array with current densities up to 225 A/in ${ }^{3}$.

LGA03C

LGA06C

LGA10C

LGA20C

SPECIAL FEATURES

- High density, ultra low profile surface mount module in Land Grid Array (LGA) package
- Available in 4 different output current levels: 3, 6, 10 and 20 A
- Wide input voltage range: 3.0 to 14.0 V
- Adjustable output voltage: 0.59 to 5.1 V via external resistor
- High efficiency ~92\% typical
- Wide ambient operating temperature range: -40 to $85^{\circ} \mathrm{C}$
- Input UVLO; remote On/Off; output adjust; margin; PGood signal, differential sense
- Current sink capability for voltage termination applications
- Integrated input and output capacitors resulting in minimal external capacitance required for stable operation

Ordering Information					
Output Current	Input Voltage	Output Voltage	Efficiency	Package L x W x H (mm)	Model Number
Surface-Mounting					
3 A	3.0 to 14 VDC	0.59 to 5.1 V	92\%	$0.65 \times 0.65 \times 0.129$ in ($16.51 \times 16.51 \times 3.27)$	LGA03C-00SADJJ
6 A	3.0 to 14 VDC	0.59 to 5.1 V	92\%	$0.65 \times 0.65 \times 0.129$ in $(16.51 \times 16.51 \times 3.27)$	LGA06C-00SADJJ
10 A	3.0 to 14 VDC	0.59 to 5.1 V	92\%	$0.65 \times 0.65 \times 0.129$ in ($16.51 \times 16.51 \times 3.27$)	LGA10C-00SADJJ
20 A	4.5 to 14 VDC	0.59 to 5.1 V	91\%	$0.65 \times 0.65 \times 0.210$ in ($16.51 \times 16.51 \times 5.33)$	LGA20C-01SADJJ

[^13]
INDUSTRY STANDARD NON-ISOLATED

POLA - General Purpose

Choose POLA Modules for Multi-sourced and Interoperable Parts

SPECIAL FEATURES

- Input voltage ranges: 2.95 to 3.65 V , 4.5 to $5.5 \mathrm{~V}, 10.8$ to 13.2 V
- Wide output voltage trim and adjustability: 0.8 to 5.5 V
- Output current: 6 to 60 A
- High efficiency up to 96%
- Auto-Track ${ }^{\text {™ }}$ Sequencing
- Margin up/down controls
- Pre-bias start-up capability
- Remote on/off
- Remote sense
- POLA compatible
- True multi-sourcing flexibility (form, fit and function)
- Operating temperature range: -40 to $85^{\circ} \mathrm{C}$
- Protection: overcurrent/short-circuit
- Through-hole or surface-mount
- International safety standard approvals UL, CSA, TÜV \& CB Report

Ordering Information					
Output Current	Input Voltage	Output Voltage	Efficiency	Package L x W x H (mm)	Model Number ${ }^{1}$
6 A	2.95 to 3.65 VDC	0.8 to 2.5 V	94\%	$0.87 \times 0.495 \times 0.335$ in $(22.01 \times 12.57 \times 8.51)$	PTH03050WAD
6 A	4.5 to 5.5 VDC	0.8 to 3.6 V	95\%	$0.87 \times 0.495 \times 0.335$ in $(22.01 \times 12.57 \times 8.51)$	PTH05050WAD
6 A	10.8 to 13.2 VDC	1.2 to 5.5 V	93\%	$0.87 \times 0.495 \times 0.335$ in $(22.01 \times 12.57 \times 8.51)$	PTH12050WAD
8 A	2.95 to 3.65 VDC	0.8 to 2.5 V	93\%	$0.9 \times 0.33 \times 0.4$ in ($22.86 \times 8.38 \times 10.16$)	PTV03010WAD
8 A	4.5 to 5.5 VDC	0.8 to 3.6 V	95\%	$0.9 \times 0.33 \times 0.4$ in $(22.86 \times 8.38 \times 10.16)$	PTV05010WAD
8 A	10.8 to 13.2 VDC	1.2 to 5.5 V	92\%	$0.9 \times 0.33 \times 0.4$ in ($22.86 \times 8.38 \times 10.16$)	PTV12010WAD
10 A	2.95 to 3.65 VDC	0.8 to 2.5 V	93\%	$0.995 \times 0.62 \times 0.354$ in $(25.27 \times 15.75 \times 8.99)$	PTH03060WAD
10 A	4.5 to 5.5 VDC	0.8 to 3.6 V	94\%	$0.995 \times 0.62 \times 0.354$ in $(25.27 \times 15.75 \times 8.99)$	PTH05060WAD
10 A	10.8 to 13.2 VDC	1.2 to 5.5 V	94\%	$0.995 \times 0.62 \times 0.354$ in $(25.27 \times 15.75 \times 8.99)$	PTH12060WAD
12 A	10.8 to 13.2 VDC	1.2 to 5.5 V	94\%	$1.370 \times 0.62 \times 0.354$ in $(34.80 \times 15.75 \times 8.99)$	PTH12010WAD
15 A	2.95 to 3.65 VDC	0.8 to 2.5 V	93\%	$1.370 \times 0.62 \times 0.354$ in $(34.80 \times 15.75 \times 8.99)$	PTH03010WAD
15 A	4.5 to 5.5 VDC	0.8 to 3.6 V	95\%	$1.370 \times 0.62 \times 0.354$ in $(34.80 \times 15.75 \times 8.99)$	PTH05010WAD
16 A	10.8 to 13.2 VDC	1.2 to 5.5 V	93\%	$1.750 \times 0.37 \times 0.500$ in $(44.45 \times 9.4 \times 12.7)$	PTV12020WAD
18 A	2.95 to 3.6 VDC	0.8 to 2.5 V	95\%	$1.750 \times 0.37 \times 0.500$ in $(44.45 \times 9.4 \times 12.7)$	PTV03020WAD
18 A	4.5 to 5.5 VDC	0.8 to 3.6 V	94\%	$1.750 \times 0.37 \times 0.500$ in $(44.45 \times 9.4 \times 12.7)$	PTV05020WAD
18 A	10.8 to 13.2 VDC	1.2 to 5.5 V	95\%	$1.495 \times 0.87 \times 0.354$ in $(37.97 \times 22.01 \times 8.99)$	PTH12020WAD
22 A	2.95 to 3.65 VDC	0.8 to 2.5 V	95\%	$1.495 \times 0.87 \times 0.354$ in $(37.97 \times 22.01 \times 8.99)$	PTH03020WAD
22 A	4.5 to 5.5 VDC	0.8 to 3.6 V	96\%	$1.495 \times 0.87 \times 0.354$ in $(37.97 \times 22.01 \times 8.99)$	PTH05020WAD
26 A	10.2 to 13.8 VDC	1.2 to 5.5 V	95\%	$1.37 \times 1.12 \times 0.354$ in $(34.80 \times 28.45 \times 8.99)$	PTH12030WAD
30 A	2.95 to 3.65 VDC	0.8 to 2.5 V	93\%	$1.37 \times 1.12 \times 0.354$ in $(34.80 \times 28.45 \times 8.99)$	PTH03030WAD
30 A	4.5 to 5.5 VDC	0.8 to 3.6 V	94\%	$1.37 \times 1.12 \times 0.354$ in $(34.80 \times 28.45 \times 8.99)$	PTH05030WAD
50 A	8.0 to 14 VDC	0.8 to 5.5 V	96\%	$2.045 \times 1.045 \times 0.357$ in $(51.94 \times 26.54 \times 9.07)$	PTH12040WAD
60 A	2.95 to 2.5 VDC	0.8 to 2.5 V	96\%	$2.045 \times 1.045 \times 0.357$ in $(51.94 \times 26.54 \times 9.07)$	PTH04040WAD

[^14]
Digital DC-DC Converters

SPECIALFEATURES

- PMBus ${ }^{\text {TM }}$ compliant control and monitoring functions available on all digital DC-DC products
- Popular monitoring functions such as temperature, voltage, and current are all available
- Control functions for enabling and sequencing are all available.

ISOLATED DC-DC SPECIAL FEATURES

- Isolated DC-DC converters follow the DOSA standard footprints for digital interface bricks

Ordering Information					
Vout	lout	Input Voltage	Package size	Efficiency	Model Number
12 VDC	26 A	48 V (36 to 75 V)	Eighth brick	95\%	ADO300-48S12-6LI
	26 A	48 V (36 to 75 V$)$	Eighth brick	95\%	ADO300-48S12B-6LI
	42 A	48 V (36 to 75 V$)$	Quarter brick	95\%	ADQ500-48S12-6LI
	42 A	48 V (36 to 75 V$)$	Quarter brick	95\%	ADQ500-48S12B-6LI
	58 A	$48 \mathrm{~V}(40$ to 60 V$)$	Quarter brick	96\%	ADQ700-48S12-LI
	58 A	48 V (40 to 60 V$)$	Quarter brick	96\%	ADQ700-48S12B-6LI
	90 A	48 V (40 to 60 V$)$	Quarter brick	97.5\%	BDQ1300-48S12B-4LI

NON-ISOLATED DC-DC SPECIAL FEATURES

- Non-isolated LGA50D has dual independently controlled channels of up to 25 A per channel
- Non-isolated LGA80D has dual independently controlled channels of up to 40 A per channel
- Provides current density of 160 A per in ${ }^{2}$
- Evaluation kit available

LGA80D-00SADJJ

LGA110D-DEMO-KIT

Ordering Information					
Output current	Input voltage	Output voltage	Efficiency	Package L x W x H (mm)	Model number
Total current 50A	7.5 to 14 VDC	0.6 to 5.2V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48 \mathrm{in}(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJ
Total current 50A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41 \mathrm{in}(25.4 \times 12.7 \times 10.6)$	LGA50D-01DADJSBJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41$ in $(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJSBJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.41 \mathrm{in}(25.4 \times 12.7 \times 12.2)$	LGA50D-01DADJSBJ
Total current 50A	7.5 to 14 VDC	0.6 to 3.3V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Channel 1; 25A	7.5 to 14 VDC	0.6 to 3.3 V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Channel 2; 25A	7.5 to 14 VDC	0.6 to 3.3V	91.1\%	$1 \times 0.5 \times 0.23$ in $(25.4 \times 12.7 \times 5.85)$	LGA50D-01DADJLPJ
Total current 80A	7.5 to 14 VDC	0.6 to 5.2V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Channel 1; 40A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Channel 2; 40A	7.5 to 14 VDC	0.6 to 5.2 V	95.5\%	$1 \times 0.5 \times 0.48$ in $(25.4 \times 12.7 \times 12.2)$	LGA80D-01DADJJ
Total output 110A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52 \mathrm{in}(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ
Channel 1; 55A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52$ in $(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ
Channel 2; 55A	7.5 to 14 VDC	0.5 V to 5 V	96\%	$1.08 \times 0.5 \times 0.52$ in $(27.5 \times 12.8 \times 13.4)$	LGA110D-01DADJJ

On-Board AC-DC Distributed Architecture

- High power and high density AC-DC building blocks for quick-turn and modular power solutions
- Alternative power solutions vs. custom development approach
- No fans and high reliability (1M hours MTBF)
- Suitable for harsh temperature conditions ($-40^{\circ} \mathrm{C}$ start-up/-20 to $100^{\circ} \mathrm{C}$ operating temperature)
- RTCA-DO Compliant for some AIQ/AIT models

AIF-Case-Kit

Compatible for use with full AIF PFC full brick modules to assist with radiated EMI emissions in sensitive applications.

Power Factor Correction
 (PFC)

 75 W

SPECIAL FEATURES

- IEC 1000-3.2 compliance
- On/off enable
- $100^{\circ} \mathrm{C}$ baseplate
- Clock synch (in/out)
- Current monitoring
- Vout adjust
- Remote sense
- 95\% efficiency
- Fast transient response
- $1600 \mathrm{~W} / 720 \mathrm{~W} / 75 \mathrm{~W}$
- Unity power factor
- Universal input and frequency range
- Positive and negative enable
- Paralleling with current share

$185^{\circ} \mathrm{C}$ temperature

High Power 300 Vin

SPECIAL FEATURES

- 300 V input (250 to 420 V PFC-ready)
- 2nd generation product
- Standard through-hole termination
- Power density > $100 \mathrm{~W} / \mathrm{in}^{3}$
- $100^{\circ} \mathrm{C}$ max baseplate operating temperature
- Embedded controls on secondary side (Full- and Half-brick):
- Temp monitor
- Current sharing
- Power good signal
- Current limit \& OVP adjust

Ordering Information						
	Vout	lout	Input Voltage	Package L x W x H (mm)	Efficiency	Model Number
AIF 300 Vin	Full-Brick - Baseplate					
	1.8 V	120 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5$ in $(116.84 \times 60.96 \times 12.7)$	80\%	AIF120Y300-L
	3.3 V	120 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5$ in $(116.84 \times 60.96 \times 12.7)$	87\%	AIF120F300-L
	5 V	80 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5 \mathrm{in}(116.84 \times 60.96 \times 12.7)$	90\%	AIF80A300-L
	12 V	50 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5$ in $(116.84 \times 60.96 \times 12.7)$	90\%	AIF50B300-L
	15 V	40 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5 \mathrm{in}(116.84 \times 60.96 \times 12.7)$	90\%	AIF40C300-L
	24 V	25 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5 \mathrm{in}(116.84 \times 60.96 \times 12.7)$	90\%	AIF25H300-L
	48 V	12 A	$300 \mathrm{~V}(250$ to 420 V$)$	$4.6 \times 2.4 \times 0.5 \mathrm{in}(116.84 \times 60.96 \times 12.7)$	91\%	AIF12W300-L
AlH 300 Vin	Half-Brick - Baseplate					
	1.8 V	50 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5$ in $(58.42 \times 60.96 \times 12.7)$	80\%	AlH50Y300-L
	3.3 V	50 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5 \mathrm{in}(58.42 \times 60.96 \times 12.7)$	85\%	AlH50F300-L
	5 V	40 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5 \mathrm{in}(58.42 \times 60.96 \times 12.7)$	88\%	AlH40A300-L
	12 V	20 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5 \mathrm{in}(58.42 \times 60.96 \times 12.7)$	90\%	AlH20B300-L
	15 V	16 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5 \mathrm{in}(58.42 \times 60.96 \times 12.7)$	90\%	AlH16C300-L
	24 V	10 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 2.4 \times 0.5$ in $(58.42 \times 60.96 \times 12.7)$	90\%	AlH10H300-L
AIQ 300 Vin	Quarter-Brick - Baseplate					
	28 V	2.32 A	$300 \mathrm{~V}(250$ to 420 V$)$	$2.3 \times 1.45 \times 0.5$ in $(58.42 \times 36.83 \times 12.7)$	89\%	AIQ02R300L

[^15]
LOW POWER ISOLATED DC-DC PRODUCT

Low Power Isolated DC-DC Product

SPECIAL FEATURES

- Input voltages 9 to $36 \mathrm{~V}, 18$ to 36 V , 18 to 75 V and 36 to 75 V
- Single and dual outputs
- Power 2 to 50 W
- Regulated outputs
- Over-current protection
- Operating temperature -40 to $71^{\circ} \mathrm{C}$ (ambient)
- 1500 VDC isolation
- CE Mark Safety
- UL Approval (Except AET Series)

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
$3 W$	Enclosed					
	4.5 to 10 VDC	3.3 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	79\%	AYA01F05-L
	4.5 to 10 VDC	5 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	81\%	AYA01A05-L
	4.5 to 10 VDC	12 V @ 0.25 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	85\%	AYA01B05-L
	4.5 to 10 VDC	15 V @ 0.2 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	85\%	AYA01C05-L
	4.5 to 10 VDC	$\pm 5 \mathrm{~V}$ @ 0.3 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	82\%	AYA01AA05-L
	4.5 to 10 VDC	± 12 V @ 0.125 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	84\%	AYA01BB05-L
	4.5 to 10 VDC	± 15 V @ 0.1 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	85\%	AYA01CC05-L
	9 to 18 VDC	3.3 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	80\%	AYA01F12-L
	9 to 18 VDC	5 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	83\%	AYA01A12-L
	9 to 18 VDC	$12 \mathrm{~V} @ 0.25$ A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01B12-L
	9 to 18 VDC	15 V @ 0.2 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01C12-L
	9 to 18 VDC	$\pm 5 \mathrm{~V}$ @ 0.3 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	84\%	AYA01AA12-L
	9 to 18 VDC	± 12 V @ 0.125 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	86\%	AYA01BB12-L
	9 to 18 VDC	± 15 V @ 0.1 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01CC12-L
	9 to 36 VDC	3.3 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	75\%	ATA00F18-L
	9 to 36 VDC	3.3 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	75\%	ATA00F18S-L
	9 to 36 VDC	5 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA00A18-L
	9 to 36 VDC	5 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	78\%	ATA00A18S-L
	9 to 36 VDC	$12 \mathrm{~V} @ 0.25 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00B18-L
	9 to 36 VDC	$12 \mathrm{~V} @ 0.25 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00B18S-L
	9 to 36 VDC	15 V @ 0.2 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00C18-L
	9 to 36 VDC	15 V @ 0.2 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00C18S-L
	9 to 36 VDC	24 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00H18-L
	9 to 36 VDC	24 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00H18S-L
	9 to 36 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	77\%	ATA00AA18-L
	9 to 36 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	77\%	ATA00AA18S-L
	9 to 36 VDC	± 12 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00BB18-L
	9 to 36 VDC	± 12 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00BB18S-L

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
3 W	9 to 36 VDC	$\pm 15 \mathrm{~V}$ @ 0.1 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00CC18-L
	9 to 36 VDC	$\pm 15 \mathrm{~V} @ 0.1 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00CC18S-L
	18 to 36 VDC	3.3 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	80\%	AYA01F24-L
	18 to 36 VDC	5 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	83\%	AYA01A24-L
	18 to 36 VDC	12 V @ 0.25 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01B24-L
	18 to 36 VDC	15 V @ 0.2 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01C24-L
	18 to 36 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	84\%	AYA01AA24-L
	18 to 36 VDC	$\pm 12 \mathrm{~V} @ 0.125$ A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	86\%	AYA01BB24-L
	18 to 36 VDC	$\pm 15 \mathrm{~V} @ 0.1 \mathrm{~A}$	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	87\%	AYA01CC24-L
	18 to 75 VDC	$3.3 \mathrm{~V} @ 0.6 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	75\%	ATA00F36-L
	18 to 75 VDC	3.3 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	75\%	ATA00F36S-L
	18 to 75 VDC	5 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA00A36-L
	18 to 75 VDC	5 V @ 0.6 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	78\%	ATA00A36S-L
	18 to 75 VDC	$12 \mathrm{~V} @ 0.25 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00B36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 0.25 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00B36S-L
	18 to 75 VDC	15 V @ 0.2 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00C36-L
	18 to 75 VDC	$15 \mathrm{~V} @ 0.2 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00C36S-L
	18 to 75 VDC	24 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00H36-L
	18 to 75 VDC	24 V @ 0.125 A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00H36S-L
	18 to 75 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	77\%	ATA00AA36-L
	18 to 75 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	77\%	ATA00AA36S-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ 0.125$ A	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00BB36-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ 0.125 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00BB36S-L
	18 to 75 VDC	$\pm 15 \mathrm{~V} @ 0.1 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA00CC36-L
	18 to 75 VDC	$\pm 15 \mathrm{~V} @ 0.1 \mathrm{~A}$	$0.94 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$ SMT	1500 VDC	80\%	ATA00CC36S-L
	36 to 75 VDC	3.3 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	79\%	AYA01F48-L
	36 to 75 VDC	5 V @ 0.6 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	82\%	AYA01A48-L
	36 to 75 VDC	12 V @ 0.25 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	86\%	AYA01B48-L
	36 to 75 VDC	$15 \mathrm{~V} @ 0.2 \mathrm{~A}$	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	86\%	AYA01C48-L
	36 to 75 VDC	$\pm 5 \mathrm{~V} @ 0.3 \mathrm{~A}$	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	82\%	AYA01AA48-L
	36 to 75 VDC	$\pm 12 \mathrm{~V} @ 0.125 \mathrm{~A}$	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	85\%	AYA01BB48-L
	36 to 75 VDC	$\pm 15 \mathrm{~V}$ @ 0.1 A	$0.55 \times 0.55 \times 0.31$ in $(14 \times 14 \times 8)$	1500 VDC	85\%	AYA01CC48-L

LOW POWER ISOLATED DC-DC PRODUCT

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
6 W	Enclosed					
	9 to 36 VDC	3.3 V @ 1.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA01F18-L
	9 to 36 VDC	3.3 V @ 1.2 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	78\%	ASA01F18-LS
	9 to 36 VDC	5 V @ 1 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	81\%	ASA01A18-LS
	9 to 36 VDC	5 V @1.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	82\%	ATA01A18-L
	9 to 36 VDC	5 V @ $\pm 0.5 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	81\%	ASA00AA18-LS
	9 to 36 VDC	$15 \mathrm{~V} @ 0.4 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00C18-LS
	9 to 36 VDC	$12 \mathrm{~V} @ 0.5 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01B18-L
	9 to 36 VDC	12V@0.5 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA00B18-LS
	9 to 36 VDC	$12 \mathrm{~V} @ \pm 0.25 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA00BB18-LS
	9 to 36 VDC	15 V @ 0.4 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01C18-L
	9 to 36 VDC	$15 \mathrm{~V} @ \pm 0.2 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00CC18-LS
	9 to 36 VDC	24 V @ 0.25 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA01H18-L
	9 to 36 VDC	$\pm 12 \mathrm{~V}$ @ 0.25 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01BB18-L
	9 to 36 VDC	± 15 V @ 0.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA01CC18-L
	18 to 75 VDC	3.3 V @ 1.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA01F36-L
	18 to 75 VDC	3.3 V @ 1.2 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	78\%	ASA01F36-LS
	18 to 75 VDC	5 V @ 1 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	81\%	ASA01A36-LS
	18 to 75 VDC	5 V @ 1.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	82\%	ATA01A36-L
	18 to 75 VDC	5 V @ $\pm 0.5 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	81\%	ASA00AA36-LS
	18 to 75 VDC	12 V @ 0.5 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01B36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 0.5 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA00B36-LS
	18 to 75 VDC	12 V @ ± 0.25 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA00BB36-LS
	18 to 75 VDC	15 V @ 0.4 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01C36-L
	18 to 75 VDC	15 V @ 0.4 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00C36-LS
	18 to 75 VDC	15 V @ $\pm 0.2 \mathrm{~A}$	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00CC36-LS
	18 to 75 VDC	24 V @ 0.25 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA01H36-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ 0.25 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA01BB36-L
	18 to 75 VDC	± 15 V @ 0.2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA01CC36-L
8 W	Enclosed					
	9 to 36 VDC	3.3 V @ 2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA02F18-L
	9 to 36 VDC	5 V @ 1.6 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	82\%	ATA02A18-L
	9 to 36 VDC	12 V @ 0.665 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02B18-L
	9 to 36 VDC	15 V @ 0.535 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02C18-L
	9 to 36 VDC	24 V @ 0.335 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA02H18-L
	9 to 36 VDC	$\pm 12 \mathrm{~V} @ 0.335$ A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02BB18-L
	9 to 36 VDC	± 15 V @ 0.265 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA02CC18-L
	18 to 75 VDC	3.3 V @ 2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	78\%	ATA02F36-L
	18 to 75 VDC	5 V @ 1.6 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	82\%	ATA02A36-L
	18 to 75 VDC	12 V @ 0.665 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02B36-L
	18 to 75 VDC	15 V @ 0.535 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02C36-L
	18 to 75 VDC	24 V @ 0.335 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA02H36-L
	18 to 75 VDC	± 12 V @ 0.335 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	85\%	ATA02BB36-L
	18 to 75 VDC	± 15 V @ 0.265 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	86\%	ATA02CC36-L

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
10 W	Enclosed					
	9 to 36 VDC	3.3 V @ 2.2 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA02F18-L
	9 to 36 VDC	3.3 V @ 2.7 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA03F18-L
	9 to 36 VDC	5 V @ 2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03B18-L
	9 to 36 VDC	5 V @ 2 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	84\%	AXA02A18-L
	9 to 36 VDC	12 V @ 0.83 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA00B18-L
	9 to 36 VDC	12 V @ 0.833 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	88\%	ATA03H18-L
	9 to 36 VDC	15 V @ 0.66 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA00C18-L
	9 to 36 VDC	15 V @ 0.666 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	83\%	ATA03A36-L
	9 to 36 VDC	24 V @ 0.41 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA000H18-L
	9 to 36 VDC	24 V @ 0.416 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03BB36-L
	9 to 36 VDC	$\pm 5 \mathrm{~V} @ \pm 1 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	84\%	AXA00AA18-L
	9 to 36 VDC	$\pm 12 \mathrm{~V} @ 0.416 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03CC18-L
	9 to 36 VDC	$\pm 12 \mathrm{~V} @ \pm 0.41 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA000BB18-L
	9 to 36 VDC	$\pm 15 \mathrm{~V} @ 0.333 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	88\%	ATA03C36-L
	9 to 36 VDC	$\pm 15 \mathrm{~V} @ \pm 0.33 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA000CC18-L
	18 to 36 VDC	2.5 V @ 3 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	77\%	ASA03G24-LS
	18 to 36 VDC	3.3 V @ 3 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	79\%	ASA03F24-LS
	18 to 36 VDC	5 V @ 2 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA02A24-LS
	18 to 36 VDC	12 V @ 0.835 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00B24-LS
	18 to 75 VDC	3.3 V @ 2.2 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA02F36-L
	18 to 75 VDC	3.3 V @ 2.7 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	83\%	ATA03A18-L
	18 to 75 VDC	5 V @ 2 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	88\%	ATA03C18-L
	18 to 75 VDC	5 V @ 2 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	84\%	AXA02A36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 0.83 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA00B36-L
	18 to 75 VDC	12 V @ 0.833 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03BB18-L
	18 to 75 VDC	15 V @ 0.66 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA00C36-L
	18 to 75 VDC	$15 \mathrm{~V} @ 0.666 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03B36-L
	18 to 75 VDC	24 V @ 0.41 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA000H36-L
	18 to 75 VDC	24 V @ 0.416 A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	87\%	ATA03CC36-L
	18 to 75 VDC	$\pm 5 \mathrm{~V} @ \pm 1 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	84\%	AXA00AA36-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ 0.416$ A	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	80\%	ATA03F36-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ \pm 0.41 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	86\%	AXA000BB36-L
	18 to 75 VDC	$\pm 15 \mathrm{~V} @ 0.333 \mathrm{~A}$	$0.942 \times 0.54 \times 0.31$ in $(23.8 \times 13.7 \times 8)$	1500 VDC	88\%	ATA03H36-L
	18 to 75 VDC	$\pm 15 \mathrm{~V} @ \pm 0.33 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA000CC36-L
	36 to 75 VDC	2.5 V @ 3 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	87\%	ASA03G48-LS
	36 to 75 VDC	3.3 V @ 3 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	79\%	ASA03F48-LS
	36 to 75 VDC	5 V @ 2 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	82\%	ASA02A48-LS
	36 to 75 VDC	12 V @ 0.835 A	DIP $1.25 \times 0.8 \times 0.4$ in $(31.75 \times 20.32 \times 10.16)$	1500 VDC	83\%	ASA00B48-LS

LOW POWER ISOLATED DC-DC PRODUCT

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
15 W	Enclosed					
	9 to 36 VDC	3.3 V @ 4 A	$1 \times 2 \times 0.44$ in ($25.4 \times 50.8 \times 11.30)$	1500 VDC	80\%	AEE04F18-LS
	9 to 36 VDC	5V@3A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE03A18-LS
	9 to 36 VDC	12 V @ 1.25 A	$1 \times 2 \times 0.44$ in ($25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE01B18-LS
	9 to 36 VDC	15 V @ 1 A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE01C18-LS
	9 to 36 VDC	5 V @ $\pm 1.5 \mathrm{~A}$	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	79\%	AEE01AA18-LS
	9 to 36 VDC	12 V @ ± 0.625 A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	83\%	AEE00BB18-LS
	9 to 36 VDC	15 V @ $\pm 0.5 \mathrm{~A}$	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	83\%	AEE00CC18-LS
	18 to 75 VDC	3.3V@ 4 A	$1 \times 2 \times 0.44$ in ($25.4 \times 50.8 \times 11.30)$	1500 VDC	80\%	AEE04F36-LS
	18 to 75 VDC	5 V @ 3 A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE03A36-LS
	18 to 75 VDC	12 V @1.25 A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE01B36-LS
	18 to 75 VDC	15 V @ 1 A	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	84\%	AEE01C36-LS
	18 to 75 VDC	5 V @ $\pm 1.5 \mathrm{~A}$	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	79\%	AEE01AA36-LS
	18 to 75 VDC	12 V @ $\pm 0.625 \mathrm{~A}$	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	83\%	AEE00BB36-LS
	18 to 75 VDC	15 V @ $\pm 0.5 \mathrm{~A}$	$1 \times 2 \times 0.44$ in $(25.4 \times 50.8 \times 11.30)$	1500 VDC	83\%	AEE00CC36-LS
20 W	Isolated					
	9 to 36 VDC	3.3 V @ 4.5 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA04F18-L
	9 to 36 VDC	5 V ¢ 4 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA04A18-L
	9 to 36 VDC	12 V @ 1.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01B18-L
	9 to 36 VDC	15 V @ 1.33 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01C18-L
	9 to 36 VDC	24 V @ 0.835 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	88\%	AXA00H18-L
	9 to 36 VDC	± 12 V @ 0.835 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA00BB18-L
	9 to 36 VDC	± 15 V @ 0.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA00CC18-L
	18 to 75 VDC	2.5V@ 6 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19)$	1500 VDC	79\%	AET06G36-L
	18 to 75 VDC	3.3 V @ 4.5 A	$1 \times 1 \times 0.4$ in ($25.4 \times 25.4 \times 10.16$)	1500 VDC	88\%	AXA04F36-L
	18 to 75 VDC	3.3 V @ 6 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	83\%	AET06F36-L
	18 to 75 VDC	5V@4A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA04A36-L
	18 to 75 VDC	5V@4A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	84\%	AET04A36-L
	18 to 75 VDC	5 V @ $\pm 2 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19)$	1500 VDC	84\%	AET02AA36-L
	18 to 75 VDC	12 V @ 1.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01B36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 1.67$ A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET01B36-L
	18 to 75 VDC	$12 \mathrm{~V} @ \pm 0.835$ A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET00BB36-L
	18 to 75 VDC	15 V @ 1.33 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01C36-L
	18 to 75 VDC	15 V @ 1.33 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET01C36-L
	18 to 75 VDC	$15 \mathrm{~V} @ \pm 0.665 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET00CC36-L
	18 to 75 VDC	24 V @ 0.835 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	88\%	AXA00H36-L
	18 to 75 VDC	± 12 V @ 0.835 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA00BB36-L
	18 to 75 VDC	± 15 V @ 0.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA00CC36-L

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
20 W	Enclosed					
	9 to 36 VDC	2.5V@ 6 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	79\%	AET06G18-L
	9 to 36 VDC	3.3V@ 6 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	83\%	AET06F18-L
	9 to 36 VDC	5 V @ 4 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	84\%	AET04A18-L
	9 to 36 VDC	5 V @ $\pm 2 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	84\%	AET02AA18-L
	9 to 36 VDC	12 V @ 1.67 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET01B18-L
	9 to 36 VDC	$12 \mathrm{~V} @ \pm 0.835 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET00BB18-L
	9 to 36 VDC	15 V @ 1.33 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET01C18-L
	9 to 36 VDC	15 V @ $\pm 0.665 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET00CC18-L
25 W	Enclosed					
	9 to 36 VDC	3.3 V @ 6 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	87\%	AXA06F18-L
	9 to 36 VDC	5 V @ 5 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA05A18-L
	9 to 36 VDC	$12 \mathrm{~V} @ 2.09 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA02B18-L
	9 to 36 VDC	15 V @ 1.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	90\%	AXA02C18-L
	9 to 36 VDC	$\pm 12 \mathrm{~V}$ @ 1.04 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01BB18-L
	9 to 36 VDC	$\pm 15 \mathrm{~V} @ 0.84 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01CC18-L
	18 to 75 VDC	3.3 V @ 6 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	88\%	AXA06F36-L
	18 to 75 VDC	5 V @ 5 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	90\%	AXA05A36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 2.09 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	90\%	AXA02B36-L
	18 to 75 VDC	15 V @ 1.67 A	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	90\%	AXA02C36-L
	18 to 75 VDC	$\pm 12 \mathrm{~V} @ 1.04 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01BB36-L
	18 to 75 VDC	$\pm 15 \mathrm{~V} @ 0.84 \mathrm{~A}$	$1 \times 1 \times 0.4$ in $(25.4 \times 25.4 \times 10.16)$	1500 VDC	89\%	AXA01CC36-L
30 W	Enclosed					
	9 to 36 VDC	2.5 V @ 8 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	79\%	AET08G18-L
	9 to 36 VDC	3.3 V @ 7 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	82\%	AET07F18-L
	9 to 36 VDC	5 V @ 6 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	84\%	AET06A18-L
	9 to 36 VDC	12 V @ 2.5 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET02B18-L
	9 to 36 VDC	15 V @ 2 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET02C18-L
	9 to 36 VDC	$12 \mathrm{~V} @ \pm 1.25 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET01BB18-L
	9 to 36 VDC	$15 \mathrm{~V} @ \pm 1 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET01CC18-L
	18 to 75 VDC	2.5 V @ 8 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	79\%	AET08G36-L
	18 to 75 VDC	3.3 V @ 7 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	82\%	AET07F36-L
	18 to 75 VDC	5 V @ 6 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	84\%	AET06A36-L
	18 to 75 VDC	12 V @ 2.5 A	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET02B36-L
	18 to 75 VDC	15 V @ 2 A	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET02C36-L
	18 to 75 VDC	$12 \mathrm{~V} @ \pm 1.25 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in $(40.6 \times 50.8 \times 12.19)$	1500 VDC	85\%	AET01BB36-L
	18 to 75 VDC	15 V @ $\pm 1 \mathrm{~A}$	$1.6 \times 2 \times 0.48$ in ($40.6 \times 50.8 \times 12.19$)	1500 VDC	85\%	AET01CC36-L

LOW POWER ISOLATED DC-DC PRODUCT

Low Power Isolated DC-DC						
	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
40 W	Enclosed					
	9 to 36 VDC	3.3 V @ 8 A	$2 \times 1 \times 0.4$ in (25.4 $\times 50.8 \times 10.2)$	1500 VDC	89\%	AEE08F18-L
	9 to 36 VDC	5V@8A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE08A18-L
	9 to 36 VDC	12 V @ 3.33 A	$2 \times 1 \times 0.4$ in (25.4 $\times 50.8 \times 10.2$)	1500 VDC	89\%	AEE03B18-L
	9 to 36 VDC	15 V @ 2.67 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	89\%	AEE02C18-L
	9 to 36 VDC	24 V @ 1.67 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE01H18-L
	9 to 36 VDC	± 12 V @ 1.67 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	88\%	AEE01BB18-L
	9 to 36 VDC	± 15 V @ 1.67 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	88\%	AEE01CC18-L
	18 to 75 VDC	3.3 V @ 8 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	89\%	AEE08F36-L
	18 to 75 VDC	5V@8A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE08A36-L
	18 to 75 VDC	$12 \mathrm{~V} @ 3.33 \mathrm{~A}$	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE03B36-L
	18 to 75 VDC	15 V @ 2.67 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE02C36-L
	18 to 75 VDC	24 V @ 1.67 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE01H36-L
	18 to 75 VDC	± 12 V @ 1.67 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	88\%	AEE01BB36-L
	18 to 75 VDC	± 15 V @ 1.67 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2$)	1500 VDC	88\%	AEE01CC36-L
50 W	Enclosed					
	9 to 36 VDC	3.3 V @ 10 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE10F18-L
	9 to 36 VDC	5 V @ 10 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE10A18-L
	9 to 36 VDC	12 V @ 4.17 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	92\%	AEE04B18-L
	9 to 36 VDC	15 V @ 3.33 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	92\%	AEE03C18-L
	9 to 36 VDC	24 V @ 2.08 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE02H18-L
	18 to 75 VDC	3.3 V @ 10 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	90\%	AEE10F36-L
	18 to 75 VDC	5V@10 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE10A36-L
	18 to 75 VDC	12 V @ 4.17 A	$2 \times 1 \times 0.4$ in $(25.4 \times 50.8 \times 10.2)$	1500 VDC	92\%	AEE04B36-L
	18 to 75 VDC	15 V @ 3.33 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	92\%	AEE03C36-L
	18 to 75 VDC	24 V @ 2.08 A	$2 \times 1 \times 0.4$ in ($25.4 \times 50.8 \times 10.2)$	1500 VDC	91\%	AEE02H36-L

DC-DC Converter for Railway Applications

	Input Voltage	Output	Package (mm)	I/O Isolation	Efficiency	Model Number
10 W	24 (9 to 36 V)	5 V @ 2 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	84\%	ERM02A18
	24 (9 to 36 V)	12 V @ 0.83 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00B18
	24 (9 to 36 V)	15 V @ 0.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00C18
	24 (9 to 36 V)	24 V @ 0.41 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM00H18
	24 (9 to 36 V)	± 12 V @ 0.417 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00BB18
	24 (9 to 36 V)	$\pm 15 \mathrm{~V} @ 0.335 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM00CC18
	48 (18 to 75 V)	5 V @ 2 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	84\%	ERM02A36
	48 (18 to 75 V)	12 V @ 0.83 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00B36
	48 (18 to 75 V)	15 V @ 0.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00C36
	48 (18 to 75 V)	24 V @ 0.41 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM00H36
	48 (18 to 75 V)	$\pm 12 \mathrm{~V} @ 0.417 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	89\%	ERM00BB36
	48 (18 to 75 V)	$\pm 15 \mathrm{~V} @ 0.335 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	88\%	ERM00CC36
	72, 110 (40 to 160 V)	5 V @ 2 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	82\%	ERM02A110
	72,110 (40 to 160 V)	12 V @ 0.83 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM00B110
	72, 110 (40 to 160 V)	15 V @ 0.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM00C110
	72,110 (40 to 160 V)	24 V @ 0.41 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	84\%	ERM00H110
	72, 110 (40 to 160 V)	$\pm 12 \mathrm{~V} @ 0.417 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00BB110
	72,110 (40 to 160 V)	$\pm 15 \mathrm{~V}$ @ 0.335 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM00CC110
20 W	24 (9 to 36 V)	5V@4 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM04A18
	24 (9 to 36 V)	12 V @ 1.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM01B18
	24 (9 to 36 V)	15 V @ 1.33 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM01C18
	24 (9 to 36 V)	24 V @ 0.833 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01H18
	24 (9 to 36 V)	$\pm 12 \mathrm{~V} @ 0.833 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01BB18
	24 (9 to 36 V)	$\pm 15 \mathrm{~V}$ @ 0.667 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01CC18
	48 (18 to 75 V)	5 V @ 4 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM04A36
	48 (18 to 75 V)	12 V @ 1.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM01B36
	48 (18 to 75 V)	15 V @ 1.33 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM01C36
	48 (18 to 75 V)	24 V @ 0.833 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01H36
	48 (18 to 75 V)	$\pm 12 \mathrm{~V} @ 0.833 \mathrm{~A}$	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	87\%	ERM01BB36
	48 (18 to 75 V)	± 15 V @ 0.667 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01CC36
	72, 110 (40 to 160 V)	5 V @ 4 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	83\%	ERM04A110
	72,110 (40 to 160 V)	12 V @ 1.67 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01B110
	72, 110 (40 to 160 V)	15 V @ 1.33 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01C110
	72, 110 (40 to 160 V)	24 V @ 0.833 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	85\%	ERM01H110
	72, 110 (40 to 160 V)	$\pm 12 \mathrm{~V} @ 0.833$ A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01BB110
	72, 110 (40 to 160 V)	± 15 V @ 0.667 A	$2 \times 1 \times 0.43$ in $(50.8 \times 25.4 \times 11)$	3000 VAC rms	86\%	ERM01CC110

LOW POWER ISOLATED DC-DC PRODUCT

DC-DC Converter for Railway Applications						
	Input Voltage	Output	Package (mm)	I/O Isolation	Efficiency	Model Number
50 W	72 (43 to 101 V)	5 V @ 10 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	90\%	ERM10A72
	72 (43 to 101 V)	12 V @ 4.17 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	92\%	ERM04B72
	72 (43 to 101 V)	15 V @ 3.33 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	92\%	ERM03C72
	72 (43 to 101 V)	24 V @ 2.08 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM02H72
	110 (66 to 160 V)	5 V @ 10 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	90\%	ERM10A110
	110 (66 to 160 V)	12 V @ 4.17 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM04B110
	110 (66 to 160 V)	15 V @ 3.33 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	92\%	ERM03C110
	110 (66 to 160 V)	24 V @ 2.08 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM02H110
75 W	72 (43 to 101 V)	5 V @ 15 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	89\%	ERM15A72
	72 (43 to 101 V)	12 V @ 6.25 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	92\%	ERM06B72
	72 (43 to 101 V)	15 V @ 5 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	92\%	ERM05C72
	72 (43 to 101 V)	24 V @ 3.125 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM03H72
	110 (66 to 160 V)	5 V @ 15 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	89\%	ERM15A110
	110 (66 to 160 V)	12 V @ 6.25 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM06B110
	110 (66 to 160 V)	15V@5 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	91\%	ERM05C110
	110 (66 to 160 V)	24 V @ 3.125 A	$2.28 \times 1.45 \times 0.5$ in $(57.9 \times 36.8 \times 12.7)$	3000 VAC rms	90\%	ERM03H110

DC-DC Converter for Medical Applications

SPECIALFEATURES

- Medical Safety to UL / CSA / IEC / EN 60601-1 3rd Edition
- 4200 VAC reinforced insulation
- 2 MOOP rated
- Low leakage current
- Operating Temperature Range -40 to $+85^{\circ} \mathrm{C}$ (with derating)
- Input filter meet EN 55022, Class A and FCC, Level A
- 3-year product warranty

DC-DC Converter for Medical Applications							
	Input Voltage	Output 1 Voltage	Output 2 Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
5 W	Enclosed						
	9 to 18 V	5V@1A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	75\%	ASA01A12-M
	18 to 36 V	5V@1A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	77\%	ASA01A24-M
	36 to 75 V	5 V @ A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	77\%	ASA01A48-M
6 W	Enclosed						
	9 to 18 V	12 V @ 0.5 A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	78\%	ASA01B12-M
	9 to 18 V	12 V @ 0.25 A	-12 V @ 0.25 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	78\%	ASA01BB12-M
	9 to 18 V	15 V @ 0.2 A	-15 V @ 0.2 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	78\%	ASA01CC12-M
	18 to 36 V	12 V @ 0.5 A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01B24-M
	18 to 36 V	12 V @ 0.25 A	-12 V @ 0.25 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01BB24-M
	18 to 36 V	15 V @ 0.2 A	-15 V @ 0.2 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01CC24-M
	36 to 75 V	12 V @ 0.5 A		$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01B48-M
	36 to 75 V	12 V @ 0.25 A	-12 V @ 0.25 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01BB48-M
	36 to 75 V	15 V @ 0.2 A	-15 V @ 0.2 A	$1.25 \times 0.8 \times 0.41$ in $(31.8 \times 20.3 \times 10.5)$	4200 VAC rms	80\%	ASA01CC48-M
8 W	9 to 18 V	5 V @ 1.6 A		$2 \times 1 \times 0.4$ in (50.8 $\times 25.4 \times 10.2$)	4200 VAC rms	76\%	AEE01A12-M

LOW POWER ISOLATED DC-DC PRODUCT

DC-DC Converter for Medical Applications
 Medical Safety to UL / CSA / IEC / EN 60601-1 3rd Edition

DC-DC Converter for Medical Applications							
	Input Voltage	Output 1 Voltage	Output 2 Voltage	Package L x W x H (mm)	I/O Isolation	Efficiency	Model Number
15 W	Enclosed						
	9 to 18 V	5 V @ 3 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12)$	4200 VAC rms	85\%	AEE03A12-M
	9 to 18 V	12 V @ 1.25 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE01B12-M
	9 to 18 V	15 V @ 1 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE01C12-M
	9 to 18 V	24 V @ 0.625 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE01H12-M
	9 to 18 V	12 V @ 0.625 A	-12 V @ 0.625 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE01BB12-M
	9 to 18 V	15 V @ 0.5 A	-15 V @ 0.5 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE01CC12-M
	18 to 36 V	5 V @ 3 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	87\%	AEE03A24-M
	18 to 36 V	12 V @1.25 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE01B24-M
	18 to 36 V	15 V @ 1 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE01C24-M
	18 to 36 V	24 V @ 0.625 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	90\%	AEE01H24-M
	18 to 36 V	12 V @ 0.625 A	-12 V @ 0.625 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	90\%	AEE01BB24-M
	18 to 36 V	15 V @ 0.5 A	-15 V @ 0.5 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	89\%	AEE01CC24-M
	36 to 75 V	5 V @ 3 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE03A48-M
	36 to 75 V	12 V @ 1.25 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	88\%	AEE01B48-M
	36 to 75 V	15 V @ 1 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	87\%	AEE01C48-M
	36 to 75 V	24 V @ 0.625 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE01H48-M
	36 to 75 V	12 V @ 0.625 A	-12 V @ 0.625 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	88\%	AEE01BB48-M
	36 to 75 V	15 V @ 0.5 A	-15 V @ 0.5 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	88\%	AEE01CC48-M
20 W	9 to 18 V	5 V @ 4 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	85\%	AEE04A12-M
	9 to 18 V	12 V @ 1.67 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE02B12-M
	9 to 18 V	15 V @ 1.33 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	88\%	AEE02C12-M
	9 to 18 V	24 V@ 0.84 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE02H12-M
	9 to 18 V	12 V @ 0.84 A	-12 V @ 0.84 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE02BB12-M
	9 to 18 V	15 V @ 0.67 A	-15 V @ 0.67 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	89\%	AEE02CC12-M
	18 to 36 V	5 V @ 4 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	87\%	AEE04A24-M
	18 to 36 V	12 V @ 1.67 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	89\%	AEE02B24-M
	18 to 36 V	15 V @ 1.33 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE02C24-M
	18 to 36 V	24 V @ 0.84 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	90\%	AEE02H24-M
	18 to 36 V	12 V @ 0.84 A	-12 V @ 0.84 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	90\%	AEE02BB24-M
	18 to 36 V	15 V @ 0.67 A	-15 V @ 0.67 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	89\%	AEE02CC24-M
	36 to 75 V	5 V @ 4 A		$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	88\%	AEE04A48-M
	36 to 75 V	12 V @ 1.67 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	89\%	AEE02B48-M
	36 to 75 V	15 V @ 1.33 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE02C48-M
	36 to 75 V	24 V @ 0.84 A		$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE02H48-M
	36 to 75 V	12 V @ 0.84 A	-12 V @ 0.84 A	$2 \times 1 \times 0.47$ in $(50.8 \times 25.4 \times 12)$	4200 VAC rms	88\%	AEE02BB48-M
	36 to 75 V	15 V @ 0.67 A	-15 V @ 0.67 A	$2 \times 1 \times 0.47$ in ($50.8 \times 25.4 \times 12$)	4200 VAC rms	89\%	AEE02CC48-M

Mission-Critical High Voltage Solutions for Demanding Applications

STANDARD, CONFIGURABLE MODULES

- Exceptionally wide input and output operating ranges

BENEFITS

- Products to 250 W , paralleled to 1000 W
- Proven solutions, higher reliability
- Lower initial cost
- Advanced arc handling
- Excellent power quality
- RoHS compliance
- Shorter lead times, faster integration
- Easy interfacing: digital ready

Mission-Critical High Voltage Solutions for Demanding Applications							
Series	Power (W)	Input Voltage	Output Voltage	Package L x W x H (mm)	I/O Isolation	Model Number (Examples)	Special Features
A Series	4, 15, 20, or 30	$\begin{aligned} & 12 \mathrm{~V} \text { on } 4 \mathrm{~W} \\ & 24 \mathrm{~V} \text { on } 20 \text {, or } \\ & 30 \mathrm{~W} \end{aligned}$	62 V to 40 kV	$\begin{aligned} & 1 / 16 \text { to } 6 \text { A Series: } \\ & 94 \times 38.1 \times 20.7 \\ & 10 \text { A Series: } \\ & 94.6 \times 38.7 \times 24.5 \\ & 15 \text { A Series: } \\ & 119.4 \times 38.7 \times 24.5 \\ & 20 \text { A Series: } \\ & 144.8 \times 38.7 \times 27.4 \\ & 25 \text { A Series: } \\ & 176.8 \times 40.6 \times 27.4 \\ & 30 \text { A Series: } \\ & 176.8 \times 40.6 \times 28.9 \\ & 35 \text { A Series: } \\ & 176.8 \times 40.6 \times 28.9 \\ & 40 \text { A Series: } \\ & 202.2 \times 40.6 \times 35.7 \end{aligned}$	No	$\begin{aligned} & \text { 1/16A12-P4 } \\ & \text { 40A24-N30 } \end{aligned}$	Configurable high voltage output, power and polarity Available 0 to 5 VDC or 0 to 10 VDC (full-scale) analog interfaces - Control and monitoring of high voltage output and current Wide selection of electrical, shielding and mechanical integration options Ripple performance as low at 100 ppm
AA Series	4,20 , or 30	$\begin{aligned} & 12 \mathrm{~V} \text { on } 4 \mathrm{~W} \\ & 24 \mathrm{~V} \text { on } 20 \text {, or } \\ & 30 \mathrm{~W} \end{aligned}$	62 V to 6 kV	$75.4 \times 38.1 \times 20.5$	No	$\begin{aligned} & \text { 1/16AA24-P20 } \\ & \text { 6AA12-N4 } \end{aligned}$	- Configurable high voltage output, power, and polarity in a common footprint - Available 0 to 5 VDC or 0 to 10 VDC (full-scale) analog interfaces - Control and monitoring of high voltage output and current - Selection of electrical, shielding, and mechanical integration options - Ripple performance as low as 100 ppm (0.05 Vpp)
C Series	20 or 30	24 V	125 V to 6 kV	$94 \times 38.1 \times 19.6$	No	$\begin{aligned} & \text { 1/8C24-N20 } \\ & \text { 6C24-P30 } \end{aligned}$	Fast-rise charging power delivered from an optimized design - Limited overshoot, typically less than 1% of high voltage setpoint, depending on the application - Configurable high-voltage out, power and polarity in a common, compact footprint Full-range control and monitoring of high-voltage output and current Selection of electrical, shielding and mechanical integration options
Dual Polarity C Series	125 or 250	24 V	125 V to 6 kV	$203.2 \times 114.3 \times 27.4$	No	$\begin{aligned} & \text { 1/8C24-NP125 } \\ & \text { 6C24-NP250 } \end{aligned}$	Fast-rise charging power delivered from an optimized design Limited overshoot, typically less than 1\% of high voltage setpoint, depending on the application Fully-integrated dual output package Full-range control and monitoring of high voltage output and current - Selection of electrical and mechanical integration options

HIGH VOLTAGE POWER SUPPLIES

Mission-Critical High Voltage Solutions for Demanding Applications							
Series	Power (W)	Input Voltage	Output Voltage	$\begin{aligned} & \text { Package } \mathrm{L} \times \mathrm{W} \times \mathrm{H} \\ & (\mathrm{~mm}) \end{aligned}$	I/O Isolation	Model Number (Examples)	Special Features
FIL Series	15	24 V	5 V	$119.4 \times 38.1 \times 22.9$	No	FIL-5V-3A	Units feature surface-mount technology and encapsulation techniques - Maximum output current capability down to 0 volts - Capable of providing 0 to 5 VDC and 0 to 3 A - Current and voltage mode indicators - Units are available with several options
EFL Series	12,24, or 36	12 V or 24 V	12 V or 24 V	15EFL Series: $144.8 \times 38.1 \times 33$ 30EFL Series: $177.6 \times 41.3 \times 38.1$	Yes	$\begin{aligned} & \text { 15EFL12-12W- } \\ & \text { I/O-RB } \\ & \text { 30EFL24-36W- } \\ & \text { I/O-RB } \end{aligned}$	- Precision analog control Linearity of $\pm 0.05 \%$ and accuracy of $\pm 0.2 \%$ 10ppm temperature coefficient Isolated up to 15 kV or 30 kV Isolation resistance of 150 GQ (15 kV) or 2 Gת (30 kV) 4 regulated floating LV power outputs Isolated digital and analog I/O to and from floating hot deck
FL Series	12 or 24	12 V or 24 V	12 V or 24 V	$144.8 \times 38.1 \times 29.8$	Yes	15FL12-12W	- Isolated up to 15 kV - DC leakage current of <10 nA - AC leakage capacitance of $<40 \mathrm{pF}$ - 3 regulated floating LV power outputs - Isolated digital I/O to and from floating hot deck - Isolated analog I/O to and from floating hot deck - UL/CUL Recognized Component; CE Mark (LVD \& RoHS)
High Power C Series	60, 125, 250	24 V	125 V to 60 kV	$\begin{aligned} & 1 / 8 \mathrm{C} \text { to } 6 \mathrm{C} 60 \& 125 \mathrm{~W} \text { : } \\ & 114.3 \times 101.6 \times 27 \\ & 1 / 8 \mathrm{C} \text { to } 6 \mathrm{C} 250 \mathrm{~W}: \\ & 203.2 \times 114.3 \times 27 \\ & 8 \mathrm{C} \text { to } 30 \mathrm{C} 60 \& 125 \mathrm{~W} \text { : } \\ & 203.2 \times 114.3 \times 27 \\ & 8 \mathrm{C} \text { to } 30 \mathrm{C} 250 \mathrm{~W}: \\ & 235 \times 114.3 \times 51.6 \\ & 40 \mathrm{C} \text { to } 60 \mathrm{C}: \\ & 355.6 \times 114.3 \times 63.5 \end{aligned}$	No	1/8C24-N125 6C24-P250 8C24-P60 30C24-N125 50C24-P250	Fast-rise charging power delivered from an optimized design Limited overshoot, typically less than 1\% of high voltage setpoint, depending on the application High power-to-package size ratio Full-featured analog interface includes voltage/current controls and monitors - Selection of electrical and mechanical integration options
HVA	1, 1.5, or 2	24 V	1 kV to 20 kV	Small: $152.4 \times 96.8 \times 31.8$ Large: $247.7 \times 165.1 \times 38.1$	No	$\begin{aligned} & \text { 1HVA24-P1 } \\ & \text { 20HVA24-BP1 } \end{aligned}$	- Full-range two- and four-quadrant output of voltage and current for bias, amplification or reversing - Fast voltage slew rates and broad bandwidths up to 500 Hz - Sources and sinks output current through operating range High voltage output controlled using differential analog inputs - Compact size with electrical performance and mechanical integration options
LE Series	4, 15 (10 and 30 only), 20 (1 to 6 only), 30	24 V	1 kV to 30 kV	$\begin{aligned} & 1-15 \mathrm{kV}: \\ & 152.4 \times 96.77 \times 38.15 \\ & 20-30 \mathrm{kV}: \\ & 184.91 \times 100 \times 38.16 \end{aligned}$	No	$\begin{aligned} & \hline \text { 1LE24-P4 } \\ & \text { 30LE24-N30 } \end{aligned}$	Low ripple output performance Available temperature coefficient to $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (optional $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 1 \mathrm{LE}$ to 15LE only) with line regulation less than 25 ppm High voltage output control via differential analog inputs Full-featured 0 to 10 VDC control; interface includes voltage/current controls and monitors Electrical performance and mechanical integration options

Mission-Critical High Voltage Solutions for Demanding Applications							
Series	Power (W)	Input Voltage	Output Voltage	$\begin{aligned} & \text { Package } \mathrm{L} \times \mathrm{W} \times \mathrm{H} \\ & (\mathrm{~mm}) \end{aligned}$	I/O Isolation	Model Number (Examples)	Special Features
D Series	1, 2, 4, or 6	15 V or 24 V	1 kV to 6 kV	$\begin{array}{\|l} 1 \text { to } 4 \mathrm{kV} \text {, up to } 4 \mathrm{~W}: \\ 63.5 \times 44 \times 13 \\ 1 \text { to } 6 \mathrm{kV}, 6 \mathrm{~W}: \\ 63.5 \times 44 \times 17.5 \end{array}$	No	$\begin{aligned} & \text { 1D15-N1 } \\ & \text { 6D24-P6 } \end{aligned}$	■ Small-footprint, PCB-mountable package High voltage control and monitoring accuracy better than 0.2\% - Analog interface with integral voltage control and voltage/current monitors - Over-temperature protection disables output if module case $>75^{\circ} \mathrm{C}$ - Reversed polarity, short-circuit/arc, and over-current protection
M Series	0.5, 0.8, or 1	$\begin{aligned} & 600 \mathrm{~V} \text { to } 1.5 \mathrm{kV}: \\ & 12,15 \text {, or } 24 \\ & 2 \mathrm{kV} \text { to } 3 \mathrm{kV} \text { : } \\ & 5,15, \text { or } 24 \end{aligned}$	600 V to 3 kV	$47 \times 28 \times 12.5$	No	$\begin{aligned} & \text { 0.6M0.5-P0.5 } \\ & \text { 3M24-N1 } \end{aligned}$	Low profile, lightweight, PCB-mountable package Wide selection of input and output voltage configurations Low output ripple, temperature coefficient, and line regulation (Analog interface with integral voltage control and voltage/current monitors Integrated reverse input polarity, shortcircuit/arc, and over-current protection
MPM Series	1.5 W	12 or 24	100 V to 3 kV	$38.1 \times 38.1 \times 20.1$	No	MPM12-100N MPM24-3KP	Single pin provides both module power and control of high voltage output - Compact, low-profile, PCB-mountable package - Selection of high voltage outputs: 100 to 3000 VDC, positive or negative polarity Input polarity protection; output protection from intermittent open- or short-circuits - Available input/output isolation to 100 VDC, metal shielding options
US Series	100 mW	5,12	200 V to 500 V	$25.5 \times 20.5 \times 11$	No	0.5US5-P0.1	- Small, lightweight, PCB-mountable package ($5.8 \mathrm{~cm}^{3}, 13 \mathrm{~g}$) Low output ripple, temperature coefficient, and line regulation (Analog interface with output voltage control and monitoring) Integrated over-current and short circuit/ arc protection Tin-plated metal enclosure
\checkmark Series	0.5, 0.8, or 1	$\begin{aligned} & 600 \mathrm{~V} \text { to } 1.5 \mathrm{kV}: \\ & 12,15 \text {, or } 24 \\ & 2 \mathrm{kV} \text { to } 3 \mathrm{kV}: \\ & 5,15, \text { or } 24 \end{aligned}$	600 V to 3 kV	$46 \times 12 \times 24.6$	No	$\begin{aligned} & \hline 0.6 \mathrm{~V} 0.5-\mathrm{P} 0.5 \\ & \text { 3V24-N1 } \end{aligned}$	- Small-footprint, lightweight, PCBmountable package - Wide selection of input and output voltage configurations - Low output ripple, temperature coefficient, and line regulation (Analog interface with integral voltage control and voltage/current monitors) Integrated reverse polarity, short-circuit/ arc, and overcurrent protection
XS Series	100 mW	5	100 V	$11 \times 11 \times 10.7$	No		- Small, lightweight, PCB-mountable package ($1.3 \mathrm{~cm}^{3} ; 5 \mathrm{~g}$) Output ripple < 100 ppm, with temperature coefficient < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ - Analog interface w/ output volt. control - Integrated overcurrent protection - Tin-plated metal enclosure
HV Rack ${ }^{\circledR}$ Series	1 to 4 channels, 250 W per channel, total maximum 1000 W	230 VAC	62 V to 40 kV	$482.6 \times 470 \times 133.35$	No	Custom	- Up to four configurable high-voltage outputs - Ideal for various beam applications - Cand provide floating filament 0 to $5 \mathrm{VDC} / 0$ to 3 A when used with the FIL5V-3A - Current mode and voltage mode indicator - Several options and unites

Rapid Modification and Value-Added Solutions

> Time-to-market, reliability and costs have the greatest impact on your ROI. Fully custom solutions can delay your time-to-market and undermine your competitive advantage. Avoid paying custom development costs with an Advanced Energy modified standard power supply.

While Advanced Energy's Artesyn, Excelsys and UltraVolt product lines offer a broad range of standard products that address the needs of many industries, there are occasions when a standard product does not address all your application requirements. A custom solution may not be economical or meet scheduling needs. By using proven standard platforms as building blocks, Advanced Energy can develop cost-effective turnkey power solutions that meet your exact needs.

Modified Advantage

What you will get from Advanced Energy modified power supplies:

- Broad portfolio of power supplies to leverage from
- Quick time to market vs. custom solutions
- Low risk - using proven reliable platforms as building blocks
- Cost effective (lower development cost)
- Quality, high reliability products

Modified Solutions

Advanced Energy provides modified standard products and value-add solutions in varying degrees of complexity. These meet specific customer needs in a wide range of applications, such as:

Communications

- Access solutions
- Enterprise
networking
- Wireless
- Wireline
- Optical

Healthcare

- Bio life sciences
- Dental
- Imaging
- Laboratory
- Medical

Industrial

- Process control
- Robotics
- Test \& measurement

Lighting \& Signage

- Displays
- Illuminated signs

Aero
- Avionics
- In-flight entertainment

Capabilities

The exact specifications you require within your budget and reliability standards.

$马$
\section*{Electrical Parameters}
- Factory out preset
- Low noise
- Power \& efficiency upgrades
- Hot swap control
- Inrush current control
- Integrated PDU assemblies
- Compliance to industry standards

Connectivity

- Cable wire assemblies
- Connector changes
- Busbar design
- Overmolding
- Interposer boards

Packaging

- Conformal coating
- Custom chassis/sled
- Ruggedization for shock, vibration, and hazardous locations
- Shielding for high magnetic environment
- Sealed/IP rated enclosures
- Customized print/marking/labels

Communications \& Control

- Logic signal/timing changes
- Adaptive fan control
- Output sequencing
- Peak load/efficiency optimization

Your Solution provider

FORTEC POWER

FORTEC Power

Emtron electronic GmbH
Lise-Meitner-Str. 3 | 64560 Riedstadt
Deutschland
Tel.: +49 (0) 6158 8285-0
info@emtron.de
www.emtron.de |www.fortec-power.de

A= Advanced Energy.

For international contact information, visit advancedenergy.com.
powersales@aei.com
+1 8884127832

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. We design and manufacture highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2022 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy ${ }^{\oplus}$, AE^{\oplus}, Cool ${ }^{\circledR}$, and HV Rack ${ }^{\circledR}$ are U.S. trademarks of Advanced Energy Industries, Inc. PMBus ${ }^{\top M}$ is a trademark of SMIF, Inc.

[^0]: 1 Peak load current not to exceed 30 seconds with maximum 10% duty cycle
 2 Requires at least 300 LFM of airflow

[^1]: 1 Peak load current Not to exceed 10 seconds, $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$.
 2 Requires at least 400 LFM of airflow.
 3 At $25^{\circ} \mathrm{C}$ including factory setpoint, line voltage and load current variations.
 4 Peak-to-peak ripple measured at the output terminal with 20 MHz bandwidth and $10 \mu \mathrm{~F}$ (tantalum capacitor) in parallel with $0.1 \mu \mathrm{~F}$ capacitor across the output.
 5 Optional suffix "-ME" (end-fan) and "-MF": (open-frame) available on the 12 V output.
 680 PLUS certified
 Consult the Technical Reference Notes for complete specifications

[^2]: *Change suffix "-9P" to "-4P" for IP65 rated enclosure with fly lead wires
 "Change suffix "-4P" to "-4PV" to omit the control cable)
 *Add suffix "CC" for Constant Current setting (e.g. "-4PCC"; "-9PCC")

[^3]: 1 Full dynamic specifications may Not be met at full load when output voltage is trimmed above 13 V
 2 Max Trim 14 V when used with High Power Module
 3 Max Trim 56 V when used with High Power Module
 4 a) Only one High Power module (CmE or CmF) can be used per CoolPac
 for details or support.
 5 For the CmG module the max combined power of both outputs is 120 W
 6 For the CmH module the max combined power of both outputs is 100 W
 7 When a CmK module is used in the same pack as a CmE or CmF module, one module slot must remain unpopulated.

[^4]: Options
 1 Interchangeable AC plug - must be purchased separately
 $2.1 \times 5.5 \mathrm{~mm}$ barrel plug
 3μ USB connector

[^5]: 1 For option codes, see Data Sheet

[^6]: 1 Minimum Current is (0)

[^7]: 1 Detailed input specifications please refer to ordering information section.

[^8]: 1 Consult Advanced Energy for MIL810G report (enhanced ruggedization available as an option)

[^9]: 1 Consult factory for other output voltages and options
 2 Comes with optional $\mathrm{I}^{2} \mathrm{C}$ interface
 33000 W @ 180 to 264 VAC; 1500 W @ 90 to 140 VAC
 42000 W@48V; 1300 W @ 24 V

[^10]: 1 Low line derating will apply

[^11]: 1 Max Current Step: 10% to 60%, 50% to 10%
 2 Dynamic Load: 50 Hz / 50% Duty
 3 Slew Rate: 1A/uS

[^12]: 1 Max Current Step: 10% to $60 \%, 50 \%$ to 100%
 2 Dynamic Load: @ 00 Hz to 10 kHz
 3 Slew Rate:1A/uSEC

[^13]: 1 Optional heatsink kits are available. Ordering part number is LGA-HTSK-KIT-XXX
 $X X X=$ Total height of the LGA20C-01SADJJ with heatsink attached: $045=0.45^{\prime \prime} ; 048=0.48^{\prime \prime} ; 050=0.50 "$

[^14]: 1 Mounting Option Suffix:
 D Horizontal through-hole (RoHS 6/6)
 Z Surface-mount solder ball (RoHS 6/6)

[^15]: $185^{\circ} \mathrm{C}$ temperature

